$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\psib}{\boldsymbol{\psi}}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\Xno}[1]{X_{(#1)}}
\newcommand{\xdno}[1]{\boldsymbol{x}_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
$$
Finite-precision/numerical computations; results
exact | sympy | numpy32 | numpy64 |
9 | 9.62 | 5.57 | 8.98 |
-20 | -23.39 | -7.65 | -19.93 |
10 | 17.74 | -4.50 | 9.96 |
0 | -9.19 | 4.13 | -0.26 |
0 | 5.25 | 2.99 | 0.72 |
0 | 0.18 | -1.21 | -0.93 |
0 | -2.48 | -0.41 | 0.73 |
0 | 1.81 | -0.013 | -0.36 |
0 | -0.66 | 0.08 | 0.11 |
0 | 0.12 | 0.04 | -0.02 |
0 | -0.001 | -0.02 | 0.002 |
- Column 2:
matrix
and lu_solve
from sympy.mpmath.fp
- Column 3:
numpy
matrix with 4-byte floats
- Column 4:
numpy
matrix with 8-byte floats