$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\psib}{\boldsymbol{\psi}}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\Xno}[1]{X_{(#1)}}
\newcommand{\xdno}[1]{\boldsymbol{x}_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
$$
Perfect approximation; proof of the general result
If \( f\in V \), \( f=\sum_{j\in\If}d_j\baspsi_j \), for
some \( \sequencei{d} \). Then
$$
\begin{equation*}
b_i = (f,\baspsi_i) = \sum_{j\in\If}d_j(\baspsi_j, \baspsi_i)
= \sum_{j\in\If} d_jA_{i,j}
\end{equation*}
$$
The linear system \( \sum_j A_{i,j}c_j = b_i \), \( i\in\If \), is then
$$
\begin{equation*}
\sum_{j\in\If}c_jA_{i,j} = \sum_{j\in\If}d_jA_{i,j},\quad i\in\If
\end{equation*}
$$
which implies that \( c_i=d_i \) for \( i\in\If \) and \( u \) is identical to \( f \).