
Finite difference methods for diffusion processes

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Nov 18, 2014

Note: PRELIMINARY VERSION

Contents
1 The 1D diffusion equation 3

1.1 The initial-boundary value problem for 1D diffusion . . . . . . . . . . . . . . . . 3
1.2 Forward Euler scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Backward Euler scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Sparse matrix implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Crank-Nicolson scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 The θ rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 The Laplace and Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Analysis of schemes for the diffusion equation 12
2.1 Properties of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Example: Diffusion of a discontinues profile . . . . . . . . . . . . . . . . . . . . . 13
2.3 Analysis of discrete equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Analysis of the finite difference schemes . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Analysis of the Forward Euler scheme . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Analysis of the Backward Euler scheme . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Analysis of the Crank-Nicolson scheme . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Summary of accuracy of amplification factors . . . . . . . . . . . . . . . . . . . . 18

3 Diffusion in heterogeneous media 21
3.1 Stationary solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Piecewise constant medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Exercises 26



List of Exercises and Projects
Exercise 1 Use an analytical solution to formulate a ...
Exercise 2 Use an analytical solution to formulate a ...
Exercise 3 Examine stability of a diffusion model with ... p. 20
Exercise 4 Stabilizing the Crank-Nicolson method by Rannacher ... p. 26
Project 5 Energy estimates for diffusion problems p. 26

2



1 The 1D diffusion equation
The famous diffusion equation, also known as the heat equation, reads

∂u

∂t
= α

∂2u

∂x2 ,

where u(x, t) is the unknown function to be solved for, x is a coordinate in space, and t is time.
The coefficient α is the diffusion coefficient and determines how fast u changes in time. A quick
short form for the diffusion equation is ut = αuxx.

Compared to the wave equation, utt = c2uxx, which looks very similar, but the diffusion
equation features solutions that are very different from those of the wave equation. Also, the
diffusion equation makes quite different demands to the numerical methods.

Typical diffusion problems may experience rapid change in the very beginning, but then the
evolution of u becomes slower and slower. The solution is usually very smooth, and after some
time, one cannot recognize the initial shape of u. This is in sharp contrast to solutions of the
wave equation where the initial shape is preserved - the solution is basically a moving initial
condition. The standard wave equation utt = c2uxx has solutions that propagates with speed c
forever, without changing shape, while the diffusion equation converges to a stationary solution
ū(x) as t→∞. In this limit, ut = 0, and ū is governed by ū′′(x) = 0. This stationary limit of the
diffusion equation is called the Laplace equation and arises in a very wide range of applications
throughout the sciences.

It is possible to solve for u(x, t) using a explicit scheme, but the time step restrictions soon
become much less favorable than for an explicit scheme for the wave equation. And of more
importance, since the solution u of the diffusion equation is very smooth and changes slowly, small
time steps are not convenient and not required by accuracy as the diffusion process converges to
a stationary state.

1.1 The initial-boundary value problem for 1D diffusion
To obtain a unique solution of the diffusion equation, or equivalently, to apply numerical methods,
we need initial and boundary conditions. The diffusion equation goes with one initial condition
u(x, 0) = I(x), where I is a prescribed function. One boundary condition is required at each
point on the boundary, which in 1D means that u must be known, ux must be known, or some
combination of them.

We shall start with the simplest boundary condition: u = 0. The complete initial-boundary
value diffusion problem in one space dimension can then be specified as

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0, L), t ∈ (0, T ] (1)

u(x, 0) = I(x), x ∈ [0, L] (2)
u(0, t) = 0, t > 0, (3)
u(L, t) = 0, t > 0 . (4)

Equation (64) is known as a one-dimensional diffusion equation, also often referred to as a heat
equation. With only a first-order derivative in time, only one initial condition is needed, while the
second-order derivative in space leads to a demand for two boundary conditions. The parameter
α must be given and is referred to as the diffusion coefficient.

Diffusion equations like (64) have a wide range of applications throughout physical, biological,
and financial sciences. One of the most common applications is propagation of heat, where u(x, t)

3



represents the temperature of some substance at point x and time t. Section ?? goes into several
widely occurring applications.

1.2 Forward Euler scheme
The first step in the discretization procedure is to replace the domain [0, L]× [0, T ] by a set of
mesh points. Here we apply equally spaced mesh points

xi = i∆x, i = 0, . . . , Nx,

and

tn = n∆t, n = 0, . . . , Nt .

Moreover, uni denotes the mesh function that approximates u(xi, tn) for i = 0, . . . , Nx and
n = 0, . . . , Nt. Requiring the PDE (64) to be fulfilled at a mesh point (xi, tn) leads to the
equation

∂

∂t
u(xi, tn) = α

∂2

∂x2u(xi, tn), (5)

The next step is to replace the derivatives by finite difference approximations. The computationally
simplest method arises from using a forward difference in time and a central difference in space:

[D+
t u = αDxDxu]ni . (6)

Written out,

un+1
i − uni

∆t = α
uni+1 − 2uni + uni−1

∆x2 . (7)

We have turned the PDE into algebraic equations, also often called discrete equations. The key
property of the equations is that they are algebraic, which makes them easy to solve. As usual,
we anticipate that uni is already computed such that un+1

i is the only unknown in (7). Solving
with respect to this unknown is easy:

un+1
i = uni + F

(
uni+1 − 2uni + uni−1

)
. (8)

F is the key parameter in the discrete diffusion equation.

Note that F is a dimensionless number that lumps the key physical parameter in the
problem, α, and the discretization parameters ∆x and ∆t into a single parameter. All
the properties of the numerical method are critically dependent upon the value of F (see
Section 2.4 for details).

The computational algorithm then becomes

1. compute u0
i = I(xi)for i = 0, . . . , Nx

2. for n = 0, 1, . . . , Nt:

(a) apply (8) for all the internal spatial points i = 1, . . . , Nx − 1

4



(b) set the boundary values un+1
i = 0 for i = 0 and i = Nx

The algorithm is compactly fully specified in Python:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = zeros(Nx+1) # unknown u at new time level
u_1 = zeros(Nx+1) # u at the previous time level

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_1[i] + F*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Update u_1 before next step
u_1[:]= u

The program diffu1D_u0.py1 contains a function solver_FE for solving the 1D diffusion
equation with u = 0 on the boundary. The functions plug and gaussian runs the case with I(x)
as a discontinuous plug or a smooth Gaussian function, respectively. Experiments with these two
functions reveal some important observations:

• The Forward Euler scheme leads to growing solutions if F > 1
2 .

• I(x) as a discontinuous plug leads to a saw tooth-like noise for F = 1
2 , see movie2, which is

absent for F ≤ 1
4 , see movie3.

• The smooth Gaussian initial function leads to a smooth solution, see movie4 for F = 1
2 .

1.3 Backward Euler scheme
We now apply a backward difference in time in (5), but the same central difference in space:

[D−t u = DxDxu]ni , (9)

which written out reads

uni − u
n−1
i

∆t = α
uni+1 − 2uni + uni−1

∆x2 . (10)

Now we assume un−1
i is computed, but all quantities at the "new" time level n are unknown. This

time it is not possible to solve with respect to uni because this value couples to its neighbors
1http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py
2http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
3http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
4http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_gaussian1/movie.ogg

5

http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py
http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_gaussian1/movie.ogg


in space, uni−1 and uni+1, which are also unknown. Let us examine this fact for the case when
Nx = 3. Equation (10) written for i = 1, . . . , Nx− 1 = 1, 2 becomes

un1 − un−1
1

∆t = α
un2 − 2un1 + un0

∆x2 (11)

un2 − un−1
2

∆t = α
un3 − 2un2 + un1

∆x2 (12)

The boundary values un0 and un3 are known as zero. Collecting the unknown new values un1 and
un2 on the left-hand side gives

(1 + 2F )un1 − Fun2 = un−1
1 , (13)

−Fun1 + (1 + 2F )un2 = un−1
2 . (14)

This is a coupled 2× 2 system of algebraic equations for the unknowns un1 and un2 . The equivalent
matrix form is (

1 + 2F −F
−F 1 + 2F

)(
un1
un2

)
=
(
un−1

1
un−1

2

)

Implicit vs. explicit methods.

Discretization methods that lead to a coupled system of equations for the unknown function
at a new time level are said to be implicit methods. The counterpart, explicit methods,
refers to discretization methods where there is a simple explicit formula for the values of
the unknown function at each of the spatial mesh points at the new time level. From an
implementational point of view, implicit methods are more comprehensive to code since
they require the solution of coupled equations, i.e., a matrix system, at each time level.

In the general case, (10) gives rise to a coupled (Nx − 1) × (Nx − 1) system of algebraic
equations for all the unknown uni at the interior spatial points i = 1, . . . , Nx− 1. Collecting the
unknowns on the left-hand side, (10) can be written

− Funi−1 + (1 + 2F )uni − Funi+1 = un−1
i−1 , (15)

for i = 1, . . . , Nx− 1. Here, we have introduced the mesh Fourier number

F = α
∆t

∆x2 . (16)

One can either view these equations as a system for where the uni values at the internal mesh
points, i = 1, . . . , Nx − 1, are unknown, or we may append the boundary values un0 and unNx

to the system. In the latter case, all uni for i = 0, . . . , Nx are unknown and we must add the
boundary equations to the Nx − 1 equations in (15):

un0 = 0, (17)
unNx

= 0 . (18)

6



A coupled system of algebraic equations can be written on matrix form, and this is important
if we want to call up ready-made software for solving the system. The equations (15) and (17)–(18)
correspond to the matrix equation

AU = b

where U = (un0 , . . . , unNx
), and the matrix A has the following structure:

A =



A0,0 A0,1 0 · · · · · · · · · · · · · · · 0

A1,0 A1,1 0
. . .

...

0 A2,1 A2,2 A2,3
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 Ai,i−1 Ai,i Ai,i+1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx



(19)

The nonzero elements are given by

Ai,i−1 = −F (20)
Ai,i = 1 + 2F (21)

Ai,i+1 = −F (22)

for the equations for internal points, i = 1, . . . , Nx − 1. The equations for the boundary points
correspond to

A0,0 = 1, (23)
A0,1 = 0, (24)

ANx,Nx−1 = 0, (25)
ANx,Nx

= 1 . (26)

The right-hand side b is written as

b =



b0
b1
...
bi
...
bNx


(27)

with

7



b0 = 0, (28)
bi = un−1

i , i = 1, . . . , Nx − 1, (29)
bNx = 0 . (30)

We observe that the matrix A contains quantities that do not change in time. Therefore, A
can be formed once and for all before we enter the recursive formulas for the time evolution.
The right-hand side b, however, must be updated at each time step. This leads to the following
computational algorithm, here sketched with Python code:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, N+1) # mesh points in time
u = zeros(Nx+1) # unknown u at new time level
u_1 = zeros(Nx+1) # u at the previous time level

# Data structures for the linear system
A = zeros((Nx+1, Nx+1))
b = zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
# Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_1[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

# Update u_1 before next step
u_1[:] = u

1.4 Sparse matrix implementation
We have seen from (19) that the matrix A is tridiagonal. The code segment above used a full,
dense matrix representation of A, which stores a lot of values we know are zero beforehand, and
worse, the solution algorithm computes with all these zeros. With Nx + 1 unknowns, the work
by the solution algorithm is 1

3 (Nx + 1)3 and the storage requirements (Nx + 1)2. By utilizing
the fact that A is tridiagonal and employing corresponding software tools, the work and storage
demands can be proportional to Nx only.

The key idea is to apply a data structure for a tridiagonal or sparse matrix. The scipy.sparse
package has relevant utilities. For example, we can store the nonzero diagonals of a matrix. The
package also has linear system solvers that operate on sparse matrix data structures. The code
below illustrates how we can store only the main diagonal and the upper and lower diagonals.

8



# Representation of sparse matrix and right-hand side
main = zeros(Nx+1)
lower = zeros(Nx-1)
upper = zeros(Nx-1)
b = zeros(Nx+1)

# Precompute sparse matrix
main[:] = 1 + 2*F
lower[:] = -F #1
upper[:] = -F #1
# Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense() # Check that A is correct

# Set initial condition
for i in range(0,Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
b = u_1
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_1[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage structure of A and
performs in this case a very efficient Gaussian elimination solve.

The program diffu1D_u0.py5 contains a function solver_BE, which implements the Backward
Euler scheme sketched above. As mentioned in Section 1.2, the functions plug and gaussian
runs the case with I(x) as a discontinuous plug or a smooth Gaussian function. All experiments
point to two characteristic features of the Backward Euler scheme: 1) it is always stable, and 2)
it always gives a smooth, decaying solution.

1.5 Crank-Nicolson scheme
The idea in the Crank-Nicolson scheme is to apply centered differences in space and time, combined
with an average in time. We demand the PDE to be fulfilled at the spatial mesh points, but in
between the points in the time mesh:

∂

∂t
u(xi, tn+ 1

2
) = α

∂2

∂x2u(xi, tn+ 1
2
).

for i = 1, . . . , Nx − 1 and n = 0, . . . , Nt − 1.
With centered differences in space and time, we get

[Dtu = αDxDxu]n+ 1
2

i .

On the right-hand side we get an expression

1
∆x2

(
u
n+ 1

2
i−1 − 2un+ 1

2
i + u

n+ 1
2

i+1

)
.

5http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py

9

http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py


This expression is problematic since un+ 1
2

i is not one of the unknown we compute. A possibility
is to replace un+ 1

2
i by an arithmetic average:

u
n+ 1

2
i ≈ 1

2
(
uni + un+1

i

)
.

In the compact notation, we can use the arithmetic average notation ut:

[Dtu = αDxDxu
t]n+ 1

2
i .

After writing out the differences and average, multiplying by ∆t, and collecting all unknown
terms on the left-hand side, we get

un+1
i − 1

2F (un+1
i−1 − 2un+1

i + un+1
i+1 ) = uni + 1

2F (uni−1 − 2uni + uni+1) . (31)

Also here, as in the Backward Euler scheme, the new unknowns un+1
i−1 , u

n+1
i , and un+1

i+1 are
coupled in a linear system AU = b, where A has the same structure as in (19), but with slightly
different entries:

Ai,i−1 = −1
2F (32)

Ai,i = 1
2 + F (33)

Ai,i+1 = −1
2F (34)

for the equations for internal points, i = 1, . . . , Nx − 1. The equations for the boundary points
correspond to

A0,0 = 1, (35)
A0,1 = 0, (36)

ANx,Nx−1 = 0, (37)
ANx,Nx

= 1 . (38)

The right-hand side b has entries

b0 = 0, (39)
bi = un−1

i , i = 1, . . . , Nx − 1, (40)
bNx = 0 . (41)

1.6 The θ rule
The θ rule provides a family of finite difference approximations in time:

• θ = 0 gives the Forward Euler scheme in time

• θ = 1 gives the Backward Euler scheme in time

• θ = 1
2 gives the Crank-Nicolson scheme in time

10



Applied to the 1D diffusion problem we have

un+1
i − uni

∆t = α

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 + (1− θ)
uni+1 − 2uni + uni−1

∆x2

)
.

This scheme also leads to a matrix system with entries

Ai,i−1 = −Fθ, Ai,i = 1 + 2Fθ ,Ai,i+1 = −Fθ,
while right-hand side entry bi is

bi = uni + F (1− θ)
uni+1 − 2uni + uni−1

∆x2

The corresponding entries for the boundary points are as in the Backward Euler and Crank-
Nicolson schemes listed earlier.

1.7 The Laplace and Poisson equation
The Laplace equation, ∇2u = 0, or the Poisson equation, −∇2u = f , occur in numerous
applications throughout science and engineering. In 1D these equations read u′′(x) = 0 and
−u′′(x) = f(x), respectively. We can solve 1D variants of the Laplace equations with the listed
software, because we can interpret uxx = 0 as the limiting solution of ut = αuxx when u reach
a steady state limit where ut → 0. Similarly, Poisson’s equation −uxx = f arises from solving
ut = uxx + f and letting t→ so ut → 0.

Technically in a program, we can simulate t → ∞ by just taking one large time step, or
equivalently, set α to a large value. All we need is to have F large. As F →∞, we can from the
schemes see that the limiting discrete equation becomes

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 = 0,

which is nothing but the discretization [DxDxu]n+1
i = 0 of uxx = 0.

The Backward Euler scheme can solve the limit equation directly and hence produce a solution
of the 1D Laplace equation. With the Forward Euler scheme we must do the time stepping since
F > 1/2 is illegal and leads to instability. We may interpret this time stepping as solving the
equation system from uxx by iterating on a time pseudo time variable.

1.8 Extensions
These extensions are performed exactly as for a wave equation as they only affect the spatial
derivatives (which are the same as in the wave equation).

• Variable coefficients

• Neumann and Robin conditions

• 2D and 3D

Future versions of this document will for completeness and independence of the wave equation
document feature info on the three points. The Robin condition is new, but straightforward to
handle:

−α∂u
∂n

= hT (u− Us), [−αDxu = hT (u− Us)]ni

11



2 Analysis of schemes for the diffusion equation
2.1 Properties of the solution
A particular characteristic of diffusive processes, governed by an equation like

ut = αuxx, (42)

is that the initial shape u(x, 0) = I(x) spreads out in space with time, along with a decaying
amplitude. Three different examples will illustrate the spreading of u in space and the decay in
time.

Similarity solution. The diffusion equation (42) admits solutions that depend on η = (x−
c)/
√

4αt for a given value of c. One particular solution is

u(x, t) = a erf(η) + b, (43)

where

erf(η) = 2√
π

∫ η

0
e−ζ

2
dζ, (44)

is the error function, and a and b are arbitrary constants. The error function lies in (−1, 1), is
odd around η = 0, and goes relatively quickly to ±1:

lim
η→−∞

erf(η) = −1,

lim
η→∞

erf(η) = 1,

erf(η) = −erf(−η),
erf(0) = 0,
erf(2) = 0.99532227,
erf(3) = 0.99997791 .

As t → 0, the error function approaches a step function centered at x = c. For a diffusion
problem posed on the unit interval [0, 1], we may choose the step at x = 1/2 (meaning c = 1/2),
a = −1/2, b = 1/2. Then

u(x, t) = 1
2

(
1− erf

(
x− 1

2√
4αt

))
= 1

2erfc
(
x− 1

2√
4αt

)
, (45)

where we have introduced the complementary error function erfc(η) = 1− erf(η). The solution
(45) implies the boundary conditions

u(0, t) = 1
2

(
1− erf

(
−1/2√

4αt

))
, (46)

u(1, t) = 1
2

(
1− erf

(
1/2√
4αt

))
. (47)

For small enough t, u(0, t) ≈ 1 and u(1, t) ≈ 1, but as t→∞, u(x, t)→ 1/2 on [0, 1].

12



Solution for a Gaussian pulse. The standard diffusion equation ut = αuxx admits a Gaussian
function as solution:

u(x, t) = 1√
4παt

exp
(
− (x− c)2

4αt

)
. (48)

At t = 0 this is a Dirac delta function, so for computational purposes one must start to view the
solution at some time t = tε > 0. Replacing t by tε + t in (48) makes it easy to operate with a
(new) t that starts at t = 0 with an initial condition with a finite width. The important feature of
(48) is that the standard deviation σ of a sharp initial Gaussian pulse increases in time according
to σ =

√
2αt, making the pulse diffuse and flatten out.

Solution for a sine component. For example, (42) admits a solution of the form

u(x, t) = Qe−at sin (kx) . (49)
The parameters Q and k can be freely chosen, while inserting (49) in (42) gives the constraint

a = −αk2 .

A very important feature is that the initial shape I(x) = Q sin kx undergoes a damping
exp (−αk2t), meaning that rapid oscillations in space, corresponding to large k, are very much
faster dampened than slow oscillations in space, corresponding to small k. This feature leads to a
smoothing of the initial condition with time.

The following examples illustrates the damping properties of (49). We consider the specific
problem

ut = uxx, x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0, t ∈ (0, T ],
u(x, 0) = sin(πx) + 0.1 sin(100πx) .

The initial condition has been chosen such that adding two solutions like (49) constructs an
analytical solution to the problem:

u(x, t) = e−π
2t sin(πx) + 0.1e−π

2104t sin(100πx) . (50)
Figure 1 illustrates the rapid damping of rapid oscillations sin(100πx) and the very much slower
damping of the slowly varying sin(πx) term. After about t = 0.5 · 10−4 the rapid oscillations do
not have a visible amplitude, while we have to wait until t ∼ 0.5 before the amplitude of the long
wave sin(πx) becomes very small.

2.2 Example: Diffusion of a discontinues profile
We shall see how different schemes predict the evolution of a discontinuous initial condition:

u(x, 0) =
{
UL, x < L/2
UR, x ≥ L/2

Such a discontinuous initial condition may arise when two insulated blocks of metals at different
temperature are brought in contact at t = 0. Alternatively, signaling in the brain is based on
release of a huge ion concentration on one side of a synapse, which implies diffusive transport of
a discontinuous concentration function.

More to be written...

13



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=0.00E+00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-05

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=2.33E-01

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-01

Figure 1: Evolution of the solution of a diffusion problem: initial condition (upper left), 1/100
reduction of the small waves (upper right), 1/10 reduction of the long wave (lower left), and
1/100 reduction of the long wave (lower right).

2.3 Analysis of discrete equations
A counterpart to (49) is the complex representation of the same function:

u(x, t) = Qe−ateikx,

where i =
√
−1 is the imaginary unit. We can add such functions, often referred to as wave

components, to make a Fourier representation of a general solution of the diffusion equation:

u(x, t) ≈
∑
k∈K

bke
−αk2teikx, (51)

where K is a set of an infinite number of k values needed to construct the solution. In practice,
however, the series is truncated and K is a finite set of k values need build a good approximate
solution. Note that (50) is a special case of (51) where K = {π, 100π}, bπ = 1, and b100π = 0.1.

The amplitudes bk of the individual Fourier waves must be determined from the initial
condition. At t = 0 we have u ≈

∑
k bk exp (ikx) and find K and bk such that

I(x) ≈
∑
k∈K

bke
ikx . (52)

14



(The relevant formulas for bk come from Fourier analysis, or equivalently, a least-squares method
for approximating I(x) in a function space with basis exp (ikx).)

Much insight about the behavior of numerical methods can be obtained by investigating how
a wave component exp (−αk2t) exp (ikx) is treated by the numerical scheme. It appears that
such wave components are also solutions of the schemes, but the damping factor exp (−αk2t)
varies among the schemes. To ease the forthcoming algebra, we write the damping factor as An.
The exact amplification factor corresponding to A is Ae = exp (−αk2∆t).

2.4 Analysis of the finite difference schemes
We have seen that a general solution of the diffusion equation can be built as a linear combination
of basic components

e−αk
2teikx .

A fundamental question is whether such components are also solutions of the finite difference
schemes. This is indeed the case, but the amplitude exp (−αk2t) might be modified (which also
happens when solving the ODE counterpart u′ = −αu). We therefore look for numerical solutions
of the form

unq = Aneikq∆x = Aneikx, (53)

where the amplification factor A must be determined by inserting the component into an actual
scheme.

Stability. The exact amplification factor is Ae = exp (−α2k2∆t). We should therefore require
|A| < 1 to have a decaying numerical solution as well. If −1 ≤ A < 0, An will change sign from
time level to time level, and we get stable, non-physical oscillations in the numerical solutions
that are not present in the exact solution.

Accuracy. To determine how accurately a finite difference scheme treats one wave component
(53), we see that the basic deviation from the exact solution is reflected in how well An approximates
Ane , or how well A approximates Ae.

2.5 Analysis of the Forward Euler scheme
The Forward Euler finite difference scheme for ut = αuxx can be written as

[D+
t u = αDxDxu]nq .

Inserting a wave component (53) in the scheme demands calculating the terms

eikq∆x[D+
t A]n = eikq∆xAn

A− 1
∆t ,

and

AnDxDx[eikx]q = An
(
−eikq∆x 4

∆x2 sin2
(
k∆x

2

))
.

Inserting these terms in the discrete equation and dividing by Aneikq∆x leads to

15



A− 1
∆t = −α 4

∆x2 sin2
(
k∆x

2

)
,

and consequently

A = 1− 4F sin2
(
k∆x

2

)
, (54)

where

F = α∆t
∆x2 (55)

is the numerical Fourier number. The complete numerical solution is then

unq =
(

1− 4F sin2
(
k∆x

2

))n
eikq∆x . (56)

Stability. We easily see that A ≤ 1. However, the A can be less than −1, which will lead to
growth of a numerical wave component. The criterion A ≥ −1 implies

4F sin2(p/2) ≤ 2 .

The worst case is when sin2(p/2) = 1, so a sufficient criterion for stability is

F ≤ 1
2 , (57)

or expressed as a condition on ∆t:

∆t ≤ ∆x2

2α . (58)

Note that halving the spatial mesh size, ∆x → 1
2∆x, requires ∆t to be reduced by a factor of

1/4. The method hence becomes very expensive for fine spatial meshes.

Accuracy. Since A is expressed in terms of F and the parameter we now call p = k∆x/2, we
also express Ae by F and p:

Ae = exp (−αk2∆t) = exp (−4Fp2) .

Computing the Taylor series expansion of A/Ae in terms of F can easily be done with aid of
sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols(’F p’)
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

16



The result is

A

Ae
= 1− 4F sin2 p+ 2Fp2 − 16F 2p2 sin2 p+ 8F 2p4 + · · ·

Recalling that F = α∆t/∆x, p = k∆x/2, and that sin2 p ≤ 1, we realize that the dominating
error terms are at most

1− 4α ∆t
∆x2 + α∆t− 4α2∆t2 + α2∆t2∆x2 + · · · .

2.6 Analysis of the Backward Euler scheme
Discretizing ut = αuxx by a Backward Euler scheme,

[D−t u = αDxDxu]nq ,

and inserting a wave component (53), leads to calculations similar to those arising from the
Forward Euler scheme, but since

eikq∆x[D−t A]n = Aneikq∆x
1−A−1

∆t ,

we get

1−A−1

∆t = −α 4
∆x2 sin2

(
k∆x

2

)
,

and then

A =
(
1 + 4F sin2 p

)−1
. (59)

The complete numerical solution can be written

unq =
(
1 + 4F sin2 p

)−n
eikq∆x . (60)

Stability. We see from (59) that 0 < A < 1, which means that all numerical wave components
are stable and non-oscillatory for any ∆t > 0.

2.7 Analysis of the Crank-Nicolson scheme
The Crank-Nicolson scheme can be written as

[Dtu = αDxDxu
x]n+ 1

2
q ,

or

[Dtu]n+ 1
2

q = 1
2α
(
[DxDxu]nq + [DxDxu]n+1

q

)
.

Inserting (53) in the time derivative approximation leads to

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 −A− 1

2

∆t = Aneikq∆x
A− 1

∆t .

Inserting (53) in the other terms and dividing by Aneikq∆x gives the relation

17



A− 1
∆t = −1

2α
4

∆x2 sin2
(
k∆x

2

)
(1 +A),

and after some more algebra,

A = 1− 2F sin2 p

1 + 2F sin2 p
. (61)

The exact numerical solution is hence

unq =
(

1− 2F sin2 p

1 + 2F sin2 p

)n
eikp∆x . (62)

Stability. The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0.

2.8 Summary of accuracy of amplification factors
We can plot the various amplification factors against p = k∆x/2 for different choices of the F
parameter. Figures 2, 3, and 4 show how long and small waves are damped by the various schemes
compared to the exact damping. As long as all schemes are stable, the amplification factor is
positive, except for Crank-Nicolson when F > 0.5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=20

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=2

BE
exact
CN
FE

Figure 2: Amplification factors for large time steps.

The effect of negative amplification factors is that An changes sign from one time level to
the next, thereby giving rise to oscillations in time in an animation of the solution. We see from
Figure 2 that for F = 20, waves with p ≥ π/2 undergo a damping close to −1, which means
that the amplitude does not decay and that the wave component jumps up and down in time.
For F = 2 we have a damping of a factor of 0.5 from one time level to the next, which is very
much smaller than the exact damping. Short waves will therefore fail to be effectively dampened.
These waves will manifest themselves as high frequency oscillatory noise in the solution.

A value p = π/4 corresponds to four mesh points per wave length of eikx, while p = π/2
implies only two points per wave length, which is the smallest number of points we can have to
represent the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we choose an initial
condition that leads to short waves with significant amplitude. A discontinuous I(x) will in
particular serve this purpose.

Run F = ......

18



0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=0.5

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=0.25

BE
exact
CN
FE

Figure 3: Amplification factors for time steps around the Forward Euler stability limit.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 C=0.1

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

0.75

0.80

0.85

0.90

0.95

1.00 C=0.01

BE
exact
CN
FE

Figure 4: Amplification factors for small time steps.

Exercise 1: Use an analytical solution to formulate a 1D test
This exercise explores the exact solution (48). We shall formulate a diffusion problem in half
of the domain for half of the Gaussian pulse. Then we shall investigate the impact of using an
incorrect boundary condition, which we in general cases often are forced due if the solution needs
to pass through finite boundaries undisturbed.

a) The solution (48) is seen to be symmetric at x = c, because ∂u/∂x = 0 always vanishes for
x = c. Use this property to formulate a complete initial boundary value problem in 1D involving
the diffusion equation ut = αuxx on [0, L] with ux(0, t) = 0 and u(L, t) known.

b) Use the exact solution to set up a convergence rate test for an implementation of the problem.
Investigate if a one-sided difference for ux(0, t), say u0 = u1, destroys the second-order accuracy
in space.

c) Imagine that we want to solve the problem numerically on [0, L], but we do not know the
exact solution and cannot of that reason assign a correct Dirichlet condition at x = L. One
idea is to simply set u(L, t) = 0 since this will be an accurate approximation before the diffused
pulse reaches x = L and even thereafter it might be a satisfactory condition. Let ue be the exact
solution and let u be the solution of ut = αuxx with an initial Gaussian pulse and the boundary
conditions ux(0, t) = u(L, t) = 0. Derive a diffusion problem for the error e = ue − u. Solve this

19



problem numerically using an exact Dirichlet condition at x = L. Animate the evolution of the
error and make a curve plot of the error measure

E(t) =

√√√√∫ L0 e2dx∫ L
0 udx

.

Is this a suitable error measure for the present problem?

d) Instead of using u(L, t) = 0 as approximate boundary condition for letting the diffused
Gaussian pulse out of our finite domain, one may try ux(L, t) = 0 since the solution for large t
is quite flat. Argue that this condition gives a completely wrong asymptotic solution as t→ 0.
To do this, integrate the diffusion equation from 0 to L, integrate uxx by parts (or use Gauss’
divergence theorem in 1D) to arrive at the important property

d

dt

∫ L

0
u(x, t)dx = 0,

implying that
∫ L

0 udx must be constant in time, and therefore∫ L

0
u(x, t)dx =

∫ L

0
I(x)dx .

The integral of the initial pulse is 1.

e) Another idea for an artificial boundary condition at x = L is to use a cooling law

− αux = q(u− uS), (63)

where q is an unknown heat transfer coefficient and uS is the surrounding temperature in the
medium outside of [0, L]. (Note that arguing that uS is approximately u(L, t) gives the ux = 0
condition from the previous subexercise that is qualitatively wrong for large t.) Develop a diffusion
problem for the error in the solution using (63) as boundary condition. Assume one can take
uS = 0 "outside the domain" as u → 0 for x → ∞. Find a function q = q(t) such that the
exact solution obeys the condition (63). Test some constant values of q and animate how the
corresponding error function behaves. Also compute E(t) curves as suggested in subexercise b).
Filename: diffu_symmetric_gaussian.py.

Exercise 2: Use an analytical solution to formulate a 2D test
Generalize (48) to multi dimensions by assuming that one-dimensional solutions can be multiplied
to solve ut = α∇2u. Use this solution to formulate a 2D test case where the peak of the Gaussian
is at the origin and where the domain is a rectangule in the first quadrant. Use symmetry
boundary conditions ∂u/∂n = 0 whereever possible, and use exact Dirichlet conditions on the
remaining boundaries. Filename: diffu_symmetric_gaussian_2D.pdf.

Exercise 3: Examine stability of a diffusion model with a source term
Consider a diffusion equation with a linear u term:

ut = αuxx + βu .

20



a) Derive in detail a Forward Euler scheme, a Backward Euler scheme, and a Crank-Nicolson for
this type of diffusion model. Thereafter, formulate a θ-rule to summarize the three schemes.

b) Assume a solution like (49) and find the relation between a, k, α, and β.

c) Calculate the stability of the Forward Euler scheme. Design numerical experiments to confirm
the results.

d) Repeat c) for the Backward Euler scheme.

e) Repeat c) for the Crank-Nicolson scheme.

f) How does the extra term bu impact the accuracy of the three schemes?

Hint. Compare the numerical and exact amplification factors, either in graphs or by Taylor
series expansion (or both).
Filename: diffu_stab_uterm.pdf.

3 Diffusion in heterogeneous media
Diffusion in heterogeneous media will normally imply a non-constant diffusion coefficient α = α(x).
A 1D diffusion model with such a variable diffusion coefficient reads

∂u

∂t
= ∂

∂x

(
α(x) ∂u

∂x2

)
, x ∈ (0, L), t ∈ (0, T ] (64)

u(x, 0) = I(x), x ∈ [0, L] (65)
u(0, t) = UL, t > 0, (66)
u(L, t) = U0, t > 0 . (67)

A short form of the diffusion equation with variable coefficients is ut = (αux)x.

3.1 Stationary solution
As t→∞, the solution of the above problem will approach a stationary limit where ∂u/∂t = 0.
The governing equation is then

d

dx

(
α
du

dx

)
= 0, (68)

with boundary conditions u(0) = U0 and u(L) = uL. It is possible to obtain an exact solution
of (68) for any α. Integrating twice and applying the boundary conditions to determine the
integration constants gives

u(x) = U0 + (UL − U0)
∫ x

0 (α(ξ))−1dξ∫ L
0 (α(ξ))−1dξ

. (69)

21



3.2 Piecewise constant medium
Consider a medium built of M layers. The boundaries between the layers are denoted by
b0, . . . , bM , where b0 = 0 and bM = L. If the material in each layer potentially differs from the
others, but is otherwise constant, we can express α as a piecewise constant function according to

α(x) =



α0, b0 ≤ x < b1,
...
αi, bi ≤ x < bi+1,
...
α0, bM−1 ≤ x ≤ bM .

(70)

The exact solution (69) in case of such a piecewise constant α function is easy to derive.
Assume that x is in the m-th layer: x ∈ [bm, bm+1]. In the integral

∫ x
0 (a(ξ))−1dξ we must

integrate through the first m− 1 layers and then add the contribution from the remaining part
x− bm into the m-th layer:

u(x) = U0 + (UL − U0)
∑m−1
j=0 (bj+1 − bj)/α(bj) + (x− bm)/α(bm)∑M−1

j=0 (bj+1 − bj)/α(bj)
(71)

Remark. It may sound strange to have a discontinuous α in a differential equation where one
is to differentiate, but a discontinuous α is compensated by a discontinuous ux such that αux is
continues and therefore can be differentiated as (αux)x.

3.3 Implementation
Programming with piecewise function definition quickly becomes cumbersome as the most naive
approach is to test for which interval x lies, and then start evaluating a formula like (71). In
Python, vectorized expressions may help to speed up the computations. The convenience classes
PiecewiseConstant and IntegratedPiecewiseConstant were made to simplify programming
with functions like (3.2) and expressions like (71). These utilities not only represent piecewise
constant functions, but also smoothed versions of them where the discontinuities can be smoothed
out in a controlled fashion. This is advantageous in many computational contexts (although
seldom for pure finite difference computations of the solution u).

The PiecewiseConstant class is created by sending in the domain as a 2-tuple or 2-list
and a data object describing the boundaries b0, . . . , bM and the corresponding function values
α0, . . . , αM−1. More precisely, data is a nested list, where data[i][0] holds bi and data[i][1]
holds the corresponding value αi, for i = 0, . . . ,M − 1. Given bi and αi in arrays b and a, it is
easy to fill out the nested list data.

In our application, we want to represent α and 1/α as piecewise constant function, in addition
to the u(x) function which involves the integrals of 1/α. A class creating the functions we need
and a method for evaluating u, can take the form

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].

22



"""

def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

# inv_a = 1/a is needed in formulas
inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
# Denominator in the exact formula is constant
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u(x) along with α(x) (which
works well as long as maxα(x) is of the same size as max u = max(U0, UL)).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, ’b’)
plt.hold(’on’) # Matlab style
plt.plot(x, y_a, ’r’)
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend([’solution $u$’, ’coefficient $a$’], loc=’upper left’)
if self.eps > 0:

plt.title(’Smoothing eps: %s’ % self.eps)
plt.savefig(’tmp.pdf’)
plt.savefig(’tmp.png’)
plt.show()

Figure 5 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions

By adding the eps parameter to the constructor of the SerialLayers class, we can experiment
with smoothed versions of α and see the (small) impact on u. Figure 6 shows the result.

23



0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
solution u
coefficient a

Figure 5: Solution of the stationary diffusion equation corresponding to a piecewise constant
diffusion coefficient.

24



0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6 Smoothed discontinuous coefficient (eps=0.05)

solution u
coefficient a

Figure 6: Solution of the stationary diffusion equation corresponding to a smoothed piecewise
constant diffusion coefficient.

25



4 Exercises
Exercise 4: Stabilizing the Crank-Nicolson method by Rannacher time
stepping
It is well known that the Crank-Nicolson method may give rise to non-physical oscillations in the
solution of diffusion equations if the initial data exhibit jumps (see Section 2.7). Rannacher [1]
suggested a stabilizing technique consisting of using the Backward Euler scheme for the first two
time steps with step length 1

2∆t. One can generalize this idea to taking 2m time steps of size 1
2∆t

with the Backward Euler method and then continuing with the Crank-Nicolson method, which is
of second-order in time. The idea is that the high frequencies of the initial solution are quickly
damped out, and the Backward Euler scheme treats these high frequencies correctly. Thereafter,
the high frequency content of the solution is gone and the Crank-Nicolson method will do well.

Test this idea for m = 1, 2, 3 on a diffusion problem with a discontinuous initial condition.
Measure the convergence rate using the solution (45) with the boundary conditions (46)-(47) for t
values such that the conditions are in the vicinity of ±1. For example, t < 5a1.6 · 10−2 makes the
solution diffusion from a step to almost a straight line. The program diffu_erf_sol.py shows
how to compute the analytical solution.

Project 5: Energy estimates for diffusion problems
This project concerns so-called energy estimates for diffusion problems that can be used for
qualitative analytical insight and for verification of implementations.

a) We start with a 1D homogeneous diffusion equation with zero Dirichlet conditions:

ut = αuxx, x ∈ Ω = (0, L), t ∈ (0, T ], (72)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (73)

u(x, 0) = I(x), x ∈ [0, L] . (74)

The energy estimate for this problem reads

||u||L2 ≤ ||I||L2 , (75)

where the || · ||L2 norm is defined by

||g||L2 =

√∫ L

0
g2dx . (76)

The quantify ||u||L2 or 1
2 ||u||L2 is known as the energy of the solution, although it is not the

physical energy of the system. A mathematical tradition has introduced the notion energy in this
context.

The estimate (75) says that the "size of u" never exceeds that of the initial condition, or more
equivalently, that the area under the u curve decreases with time.

To show (75), multiply the PDE by u and integrate from 0 to L. Use that uut can be expressed
as the time derivative of u2 and that uxxu can integrated by parts to form an integrand u2

x. Show
that the time derivative of ||u||2L2 must be less than or equal to zero. Integrate this expression
and derive (75).

26



b) Now we address a slightly different problem,

ut = αuxx+ f(x, t), x ∈ Ω = (0, L), t ∈ (0, T ], (77)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (78)

u(x, 0) = 0, x ∈ [0, L] . (79)

The associated energy estimate is

||u||L2 ≤ ||f ||L2 . (80)

(This result is more difficult to derive.)
Now consider the compound problem with an initial condition I(x) and a right-hand side

f(x, t):

ut = αuxx+ f(x, t), x ∈ Ω = (0, L), t ∈ (0, T ], (81)
u(0, t) = u(L, t) = 0, t ∈ (0, T ], (82)

u(x, 0) = I(x), x ∈ [0, L] . (83)

Show that if w1 fulfills (72)-(74) and w2 fulfills (77)-(79), then u = w1 + w2 is the solution of
(81)-(83). Using the triangle inequality for norms,

||a+ b|| ≤ ||a||+ ||b||,

show that the energy estimate for (81)-(83) becomes

||u||L2 ≤ ||I||L2 + ||f ||L2 . (84)

c) One application of (84) is to prove uniqueness of the solution. Suppose u1 and u2 both fulfill
(81)-(83). Show that u = u1 − u2 then fulfills (81)-(83) with f = 0 and I = 0. Use (84) to deduce
that the energy must be zero for all times and therefore that u1 = u2, which proves that the
solution is unique.

d) Generalize (84) to a 2D/3D diffusion equation ut = ∇ · (α∇u) for x ∈ Ω.

Hint. Use integration by parts in multi dimensions:∫
Ω
u∇ · (α∇u) dx = −

∫
Ω
α∇u · ∇udx+

∫
∂Ω
uα

∂u

∂n
,

where ∂u
∂n = n · ∇u, n being the outward unit normal to the boundary ∂Ω of the domain Ω.

e) Now we also consider the multi-dimensional PDE ut = ∇ · (α∇u). Integrate both sides over Ω
and use Gauss’ divergence theorem,

∫
Ω∇ · q dx =

∫
∂Ω q ·n ds for a vector field q. Show that if we

have homogeneous Neumann conditions on the boundary, ∂u/∂n = 0, area under the u surface
remains constant in time and ∫

Ω
udx =

∫
Ω
I dx . (85)

27



f) Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a source term f ,
initial condition I, and zero Dirichlet or Neumann conditions on the whole boundary.

We can use (84) and (85) as a partial verification of the code. Choose some functions f and I
and check that (84) is obeyed at any time when zero Dirichlet conditions are used. Iterate over
the same I functions and check that (85) is fulfilled when using zero Neumann conditions.

g) Make a list of some possible bugs in the code, such as indexing errors in arrays, failure to set
the correct boundary conditions, evaluation of a term at a wrong time level, and similar. For
each of the bugs, see if the verification tests from the previous subexercise pass or fail. This
investigation shows how strong the energy estimates and the estimate (85) are for pointing out
errors in the implementation.
Filename: diffu_energy.pdf.

References
[1] R. Rannacher. Finite element solution of diffusion problems with irregular data. Numerische

Mathematik, 43:309–327, 1984.

28



Index
amplification factor, 15

diffusion equation, 1D, 3

energy estimates (diffusion), 26
explicit discretization methods, 4

heat equation, 1D, 3

implicit discretization methods, 5

stationary solution, 3

29


	The 1D diffusion equation
	The initial-boundary value problem for 1D diffusion
	Forward Euler scheme
	Backward Euler scheme
	Sparse matrix implementation
	Crank-Nicolson scheme
	The  rule
	The Laplace and Poisson equation
	Extensions

	Analysis of schemes for the diffusion equation
	Properties of the solution
	Example: Diffusion of a discontinues profile
	Analysis of discrete equations
	Analysis of the finite difference schemes
	Analysis of the Forward Euler scheme
	Analysis of the Backward Euler scheme
	Analysis of the Crank-Nicolson scheme
	Summary of accuracy of amplification factors

	Diffusion in heterogeneous media
	Stationary solution
	Piecewise constant medium
	Implementation

	Exercises

