
Finite difference methods for diffusion
processes

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Nov 18, 2014

Note: PRELIMINARY VERSION

Contents
1 The 1D diffusion equation 2

1.1 The initial-boundary value problem for 1D diffusion 2
1.2 Forward Euler scheme . 3
1.3 Backward Euler scheme . 5
1.4 Sparse matrix implementation . 8
1.5 Crank-Nicolson scheme . 9
1.6 The θ rule . 11
1.7 The Laplace and Poisson equation 11
1.8 Extensions . 12

2 Analysis of schemes for the diffusion equation 12
2.1 Properties of the solution . 12
2.2 Example: Diffusion of a discontinues profile 14
2.3 Analysis of discrete equations . 14
2.4 Analysis of the finite difference schemes 16
2.5 Analysis of the Forward Euler scheme 16
2.6 Analysis of the Backward Euler scheme 18
2.7 Analysis of the Crank-Nicolson scheme 19
2.8 Summary of accuracy of amplification factors 19

3 Diffusion in heterogeneous media 23
3.1 Stationary solution . 23
3.2 Piecewise constant medium . 23
3.3 Implementation . 24

4 Exercises 27

1 The 1D diffusion equation
The famous diffusion equation, also known as the heat equation, reads

∂u

∂t
= α

∂2u

∂x2 ,

where u(x, t) is the unknown function to be solved for, x is a coordinate in
space, and t is time. The coefficient α is the diffusion coefficient and determines
how fast u changes in time. A quick short form for the diffusion equation is
ut = αuxx.

Compared to the wave equation, utt = c2uxx, which looks very similar, but
the diffusion equation features solutions that are very different from those of the
wave equation. Also, the diffusion equation makes quite different demands to
the numerical methods.

Typical diffusion problems may experience rapid change in the very beginning,
but then the evolution of u becomes slower and slower. The solution is usually
very smooth, and after some time, one cannot recognize the initial shape of u.
This is in sharp contrast to solutions of the wave equation where the initial shape
is preserved - the solution is basically a moving initial condition. The standard
wave equation utt = c2uxx has solutions that propagates with speed c forever,
without changing shape, while the diffusion equation converges to a stationary
solution ū(x) as t→∞. In this limit, ut = 0, and ū is governed by ū′′(x) = 0.
This stationary limit of the diffusion equation is called the Laplace equation and
arises in a very wide range of applications throughout the sciences.

It is possible to solve for u(x, t) using a explicit scheme, but the time step
restrictions soon become much less favorable than for an explicit scheme for the
wave equation. And of more importance, since the solution u of the diffusion
equation is very smooth and changes slowly, small time steps are not convenient
and not required by accuracy as the diffusion process converges to a stationary
state.

1.1 The initial-boundary value problem for 1D diffusion
To obtain a unique solution of the diffusion equation, or equivalently, to apply
numerical methods, we need initial and boundary conditions. The diffusion
equation goes with one initial condition u(x, 0) = I(x), where I is a prescribed
function. One boundary condition is required at each point on the bound-
ary, which in 1D means that u must be known, ux must be known, or some
combination of them.

2

We shall start with the simplest boundary condition: u = 0. The complete
initial-boundary value diffusion problem in one space dimension can then be
specified as

∂u

∂t
= α

∂2u

∂x2 , x ∈ (0, L), t ∈ (0, T] (1)

u(x, 0) = I(x), x ∈ [0, L] (2)
u(0, t) = 0, t > 0, (3)
u(L, t) = 0, t > 0 . (4)

Equation (64) is known as a one-dimensional diffusion equation, also often
referred to as a heat equation. With only a first-order derivative in time, only
one initial condition is needed, while the second-order derivative in space leads
to a demand for two boundary conditions. The parameter α must be given and
is referred to as the diffusion coefficient.

Diffusion equations like (64) have a wide range of applications throughout
physical, biological, and financial sciences. One of the most common applications
is propagation of heat, where u(x, t) represents the temperature of some substance
at point x and time t. Section ?? goes into several widely occurring applications.

1.2 Forward Euler scheme
The first step in the discretization procedure is to replace the domain [0, L]×[0, T]
by a set of mesh points. Here we apply equally spaced mesh points

xi = i∆x, i = 0, . . . , Nx,

and

tn = n∆t, n = 0, . . . , Nt .

Moreover, uni denotes the mesh function that approximates u(xi, tn) for i =
0, . . . , Nx and n = 0, . . . , Nt. Requiring the PDE (64) to be fulfilled at a mesh
point (xi, tn) leads to the equation

∂

∂t
u(xi, tn) = α

∂2

∂x2u(xi, tn), (5)

The next step is to replace the derivatives by finite difference approximations.
The computationally simplest method arises from using a forward difference in
time and a central difference in space:

[D+
t u = αDxDxu]ni . (6)

Written out,

un+1
i − uni

∆t = α
uni+1 − 2uni + uni−1

∆x2 . (7)

3

We have turned the PDE into algebraic equations, also often called discrete
equations. The key property of the equations is that they are algebraic, which
makes them easy to solve. As usual, we anticipate that uni is already computed
such that un+1

i is the only unknown in (7). Solving with respect to this unknown
is easy:

un+1
i = uni + F

(
uni+1 − 2uni + uni−1

)
. (8)

F is the key parameter in the discrete diffusion equation.

Note that F is a dimensionless number that lumps the key physical pa-
rameter in the problem, α, and the discretization parameters ∆x and ∆t
into a single parameter. All the properties of the numerical method are
critically dependent upon the value of F (see Section 2.4 for details).

The computational algorithm then becomes

1. compute u0
i = I(xi)for i = 0, . . . , Nx

2. for n = 0, 1, . . . , Nt:

(a) apply (8) for all the internal spatial points i = 1, . . . , Nx − 1
(b) set the boundary values un+1

i = 0 for i = 0 and i = Nx

The algorithm is compactly fully specified in Python:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = zeros(Nx+1) # unknown u at new time level
u_1 = zeros(Nx+1) # u at the previous time level

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_1[i] + F*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Update u_1 before next step
u_1[:]= u

4

The program diffu1D_u0.py1 contains a function solver_FE for solving
the 1D diffusion equation with u = 0 on the boundary. The functions plug
and gaussian runs the case with I(x) as a discontinuous plug or a smooth
Gaussian function, respectively. Experiments with these two functions reveal
some important observations:

• The Forward Euler scheme leads to growing solutions if F > 1
2 .

• I(x) as a discontinuous plug leads to a saw tooth-like noise for F = 1
2 , see

movie2, which is absent for F ≤ 1
4 , see movie3.

• The smooth Gaussian initial function leads to a smooth solution, see movie4

for F = 1
2 .

1.3 Backward Euler scheme
We now apply a backward difference in time in (5), but the same central difference
in space:

[D−t u = DxDxu]ni , (9)

which written out reads

uni − un−1
i

∆t = α
uni+1 − 2uni + uni−1

∆x2 . (10)

Now we assume un−1
i is computed, but all quantities at the "new" time level n

are unknown. This time it is not possible to solve with respect to uni because this
value couples to its neighbors in space, uni−1 and uni+1, which are also unknown.
Let us examine this fact for the case when Nx = 3. Equation (10) written for
i = 1, . . . , Nx− 1 = 1, 2 becomes

un1 − un−1
1

∆t = α
un2 − 2un1 + un0

∆x2 (11)

un2 − un−1
2

∆t = α
un3 − 2un2 + un1

∆x2 (12)

The boundary values un0 and un3 are known as zero. Collecting the unknown new
values un1 and un2 on the left-hand side gives

(1 + 2F)un1 − Fun2 = un−1
1 , (13)

−Fun1 + (1 + 2F)un2 = un−1
2 . (14)

1http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py
2http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
3http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
4http://tinyurl.com/opdfafk/pub/mov-diffu/diffu1D_u0_FE_plug_gaussian1/movie.ogg

5

This is a coupled 2× 2 system of algebraic equations for the unknowns un1 and
un2 . The equivalent matrix form is

(
1 + 2F −F
−F 1 + 2F

)(
un1
un2

)
=
(
un−1

1
un−1

2

)

Implicit vs. explicit methods.

Discretization methods that lead to a coupled system of equations for the
unknown function at a new time level are said to be implicit methods. The
counterpart, explicit methods, refers to discretization methods where there
is a simple explicit formula for the values of the unknown function at each
of the spatial mesh points at the new time level. From an implementational
point of view, implicit methods are more comprehensive to code since they
require the solution of coupled equations, i.e., a matrix system, at each
time level.

In the general case, (10) gives rise to a coupled (Nx− 1)× (Nx− 1) system
of algebraic equations for all the unknown uni at the interior spatial points
i = 1, . . . , Nx− 1. Collecting the unknowns on the left-hand side, (10) can be
written

− Funi−1 + (1 + 2F)uni − Funi+1 = un−1
i−1 , (15)

for i = 1, . . . , Nx− 1. Here, we have introduced the mesh Fourier number

F = α
∆t

∆x2 . (16)

One can either view these equations as a system for where the uni values at
the internal mesh points, i = 1, . . . , Nx − 1, are unknown, or we may append
the boundary values un0 and unNx

to the system. In the latter case, all uni for
i = 0, . . . , Nx are unknown and we must add the boundary equations to the
Nx − 1 equations in (15):

un0 = 0, (17)
unNx

= 0 . (18)

A coupled system of algebraic equations can be written on matrix form,
and this is important if we want to call up ready-made software for solving the
system. The equations (15) and (17)–(18) correspond to the matrix equation

AU = b

where U = (un0 , . . . , unNx
), and the matrix A has the following structure:

6

A =




A0,0 A0,1 0 · · · · · · · · · · · · · · · 0

A1,0 A1,1 0

0 A2,1 A2,2 A2,3
.

... 0
...

...

... 0 Ai,i−1 Ai,i Ai,i+1
.

... 0

... ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx




(19)
The nonzero elements are given by

Ai,i−1 = −F (20)
Ai,i = 1 + 2F (21)

Ai,i+1 = −F (22)

for the equations for internal points, i = 1, . . . , Nx − 1. The equations for the
boundary points correspond to

A0,0 = 1, (23)
A0,1 = 0, (24)

ANx,Nx−1 = 0, (25)
ANx,Nx = 1 . (26)

The right-hand side b is written as

b =




b0
b1
...
bi
...
bNx




(27)

with

b0 = 0, (28)
bi = un−1

i , i = 1, . . . , Nx − 1, (29)
bNx = 0 . (30)

7

We observe that the matrix A contains quantities that do not change in
time. Therefore, A can be formed once and for all before we enter the recursive
formulas for the time evolution. The right-hand side b, however, must be updated
at each time step. This leads to the following computational algorithm, here
sketched with Python code:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, N+1) # mesh points in time
u = zeros(Nx+1) # unknown u at new time level
u_1 = zeros(Nx+1) # u at the previous time level

Data structures for the linear system
A = zeros((Nx+1, Nx+1))
b = zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_1[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

Update u_1 before next step
u_1[:] = u

1.4 Sparse matrix implementation
We have seen from (19) that the matrix A is tridiagonal. The code segment
above used a full, dense matrix representation of A, which stores a lot of values
we know are zero beforehand, and worse, the solution algorithm computes with
all these zeros. With Nx + 1 unknowns, the work by the solution algorithm is
1
3 (Nx + 1)3 and the storage requirements (Nx + 1)2. By utilizing the fact that A
is tridiagonal and employing corresponding software tools, the work and storage
demands can be proportional to Nx only.

The key idea is to apply a data structure for a tridiagonal or sparse matrix.
The scipy.sparse package has relevant utilities. For example, we can store the
nonzero diagonals of a matrix. The package also has linear system solvers that
operate on sparse matrix data structures. The code below illustrates how we
can store only the main diagonal and the upper and lower diagonals.

8

Representation of sparse matrix and right-hand side
main = zeros(Nx+1)
lower = zeros(Nx-1)
upper = zeros(Nx-1)
b = zeros(Nx+1)

Precompute sparse matrix
main[:] = 1 + 2*F
lower[:] = -F #1
upper[:] = -F #1
Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense() # Check that A is correct

Set initial condition
for i in range(0,Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
b = u_1
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_1[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage struc-
ture of A and performs in this case a very efficient Gaussian elimination solve.

The program diffu1D_u0.py5 contains a function solver_BE, which imple-
ments the Backward Euler scheme sketched above. As mentioned in Section 1.2,
the functions plug and gaussian runs the case with I(x) as a discontinuous
plug or a smooth Gaussian function. All experiments point to two characteristic
features of the Backward Euler scheme: 1) it is always stable, and 2) it always
gives a smooth, decaying solution.

1.5 Crank-Nicolson scheme
The idea in the Crank-Nicolson scheme is to apply centered differences in space
and time, combined with an average in time. We demand the PDE to be fulfilled
at the spatial mesh points, but in between the points in the time mesh:

∂

∂t
u(xi, tn+ 1

2
) = α

∂2

∂x2u(xi, tn+ 1
2
).

for i = 1, . . . , Nx − 1 and n = 0, . . . , Nt − 1.
With centered differences in space and time, we get

[Dtu = αDxDxu]n+ 1
2

i .

5http://tinyurl.com/nm5587k/diffu/diffu1D_u0.py

9

On the right-hand side we get an expression

1
∆x2

(
u
n+ 1

2
i−1 − 2un+ 1

2
i + u

n+ 1
2

i+1

)
.

This expression is problematic since un+ 1
2

i is not one of the unknown we compute.
A possibility is to replace un+ 1

2
i by an arithmetic average:

u
n+ 1

2
i ≈ 1

2
(
uni + un+1

i

)
.

In the compact notation, we can use the arithmetic average notation ut:

[Dtu = αDxDxu
t]n+ 1

2
i .

After writing out the differences and average, multiplying by ∆t, and collect-
ing all unknown terms on the left-hand side, we get

un+1
i − 1

2F (un+1
i−1 − 2un+1

i + un+1
i+1) = uni + 1

2F (uni−1 − 2uni + uni+1) . (31)

Also here, as in the Backward Euler scheme, the new unknowns un+1
i−1 , un+1

i ,
and un+1

i+1 are coupled in a linear system AU = b, where A has the same structure
as in (19), but with slightly different entries:

Ai,i−1 = −1
2F (32)

Ai,i = 1
2 + F (33)

Ai,i+1 = −1
2F (34)

for the equations for internal points, i = 1, . . . , Nx − 1. The equations for the
boundary points correspond to

A0,0 = 1, (35)
A0,1 = 0, (36)

ANx,Nx−1 = 0, (37)
ANx,Nx = 1 . (38)

The right-hand side b has entries

b0 = 0, (39)
bi = un−1

i , i = 1, . . . , Nx − 1, (40)
bNx = 0 . (41)

10

1.6 The θ rule
The θ rule provides a family of finite difference approximations in time:

• θ = 0 gives the Forward Euler scheme in time

• θ = 1 gives the Backward Euler scheme in time

• θ = 1
2 gives the Crank-Nicolson scheme in time

Applied to the 1D diffusion problem we have

un+1
i − uni

∆t = α

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 + (1− θ)u
n
i+1 − 2uni + uni−1

∆x2

)
.

This scheme also leads to a matrix system with entries

Ai,i−1 = −Fθ, Ai,i = 1 + 2Fθ ,Ai,i+1 = −Fθ,
while right-hand side entry bi is

bi = uni + F (1− θ)u
n
i+1 − 2uni + uni−1

∆x2

The corresponding entries for the boundary points are as in the Backward Euler
and Crank-Nicolson schemes listed earlier.

1.7 The Laplace and Poisson equation
The Laplace equation, ∇2u = 0, or the Poisson equation, −∇2u = f , occur in
numerous applications throughout science and engineering. In 1D these equations
read u′′(x) = 0 and −u′′(x) = f(x), respectively. We can solve 1D variants of
the Laplace equations with the listed software, because we can interpret uxx = 0
as the limiting solution of ut = αuxx when u reach a steady state limit where
ut → 0. Similarly, Poisson’s equation −uxx = f arises from solving ut = uxx + f
and letting t→ so ut → 0.

Technically in a program, we can simulate t→∞ by just taking one large
time step, or equivalently, set α to a large value. All we need is to have F large.
As F → ∞, we can from the schemes see that the limiting discrete equation
becomes

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2 = 0,

which is nothing but the discretization [DxDxu]n+1
i = 0 of uxx = 0.

The Backward Euler scheme can solve the limit equation directly and hence
produce a solution of the 1D Laplace equation. With the Forward Euler scheme
we must do the time stepping since F > 1/2 is illegal and leads to instability.
We may interpret this time stepping as solving the equation system from uxx by
iterating on a time pseudo time variable.

11

1.8 Extensions
These extensions are performed exactly as for a wave equation as they only affect
the spatial derivatives (which are the same as in the wave equation).

• Variable coefficients

• Neumann and Robin conditions

• 2D and 3D

Future versions of this document will for completeness and independence of the
wave equation document feature info on the three points. The Robin condition
is new, but straightforward to handle:

−α∂u
∂n

= hT (u− Us), [−αDxu = hT (u− Us)]ni

2 Analysis of schemes for the diffusion equation
2.1 Properties of the solution
A particular characteristic of diffusive processes, governed by an equation like

ut = αuxx, (42)

is that the initial shape u(x, 0) = I(x) spreads out in space with time, along
with a decaying amplitude. Three different examples will illustrate the spreading
of u in space and the decay in time.

Similarity solution. The diffusion equation (42) admits solutions that depend
on η = (x− c)/

√
4αt for a given value of c. One particular solution is

u(x, t) = a erf(η) + b, (43)

where

erf(η) = 2√
π

∫ η

0
e−ζ

2
dζ, (44)

is the error function, and a and b are arbitrary constants. The error function
lies in (−1, 1), is odd around η = 0, and goes relatively quickly to ±1:

12

lim
η→−∞

erf(η) = −1,

lim
η→∞

erf(η) = 1,

erf(η) = −erf(−η),
erf(0) = 0,
erf(2) = 0.99532227,
erf(3) = 0.99997791 .

As t → 0, the error function approaches a step function centered at x = c.
For a diffusion problem posed on the unit interval [0, 1], we may choose the step
at x = 1/2 (meaning c = 1/2), a = −1/2, b = 1/2. Then

u(x, t) = 1
2

(
1− erf

(
x− 1

2√
4αt

))
= 1

2erfc
(
x− 1

2√
4αt

)
, (45)

where we have introduced the complementary error function erfc(η) = 1− erf(η).
The solution (45) implies the boundary conditions

u(0, t) = 1
2

(
1− erf

(−1/2√
4αt

))
, (46)

u(1, t) = 1
2

(
1− erf

(
1/2√
4αt

))
. (47)

For small enough t, u(0, t) ≈ 1 and u(1, t) ≈ 1, but as t→∞, u(x, t)→ 1/2 on
[0, 1].

Solution for a Gaussian pulse. The standard diffusion equation ut = αuxx
admits a Gaussian function as solution:

u(x, t) = 1√
4παt

exp
(
− (x− c)2

4αt

)
. (48)

At t = 0 this is a Dirac delta function, so for computational purposes one must
start to view the solution at some time t = tε > 0. Replacing t by tε + t in
(48) makes it easy to operate with a (new) t that starts at t = 0 with an initial
condition with a finite width. The important feature of (48) is that the standard
deviation σ of a sharp initial Gaussian pulse increases in time according to
σ =
√

2αt, making the pulse diffuse and flatten out.

Solution for a sine component. For example, (42) admits a solution of the
form

u(x, t) = Qe−at sin (kx) . (49)

13

The parameters Q and k can be freely chosen, while inserting (49) in (42) gives
the constraint

a = −αk2 .

A very important feature is that the initial shape I(x) = Q sin kx undergoes
a damping exp (−αk2t), meaning that rapid oscillations in space, corresponding
to large k, are very much faster dampened than slow oscillations in space,
corresponding to small k. This feature leads to a smoothing of the initial
condition with time.

The following examples illustrates the damping properties of (49). We
consider the specific problem

ut = uxx, x ∈ (0, 1), t ∈ (0, T],
u(0, t) = u(1, t) = 0, t ∈ (0, T],
u(x, 0) = sin(πx) + 0.1 sin(100πx) .

The initial condition has been chosen such that adding two solutions like (49)
constructs an analytical solution to the problem:

u(x, t) = e−π
2t sin(πx) + 0.1e−π

2104t sin(100πx) . (50)

Figure 1 illustrates the rapid damping of rapid oscillations sin(100πx) and the
very much slower damping of the slowly varying sin(πx) term. After about
t = 0.5 · 10−4 the rapid oscillations do not have a visible amplitude, while we
have to wait until t ∼ 0.5 before the amplitude of the long wave sin(πx) becomes
very small.

2.2 Example: Diffusion of a discontinues profile
We shall see how different schemes predict the evolution of a discontinuous initial
condition:

u(x, 0) =
{
UL, x < L/2
UR, x ≥ L/2

Such a discontinuous initial condition may arise when two insulated blocks of
metals at different temperature are brought in contact at t = 0. Alternatively,
signaling in the brain is based on release of a huge ion concentration on one side
of a synapse, which implies diffusive transport of a discontinuous concentration
function.

More to be written...

2.3 Analysis of discrete equations
A counterpart to (49) is the complex representation of the same function:

14

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
u

t=0.00E+00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-05

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=2.33E-01

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

t=4.67E-01

Figure 1: Evolution of the solution of a diffusion problem: initial condition
(upper left), 1/100 reduction of the small waves (upper right), 1/10 reduction of
the long wave (lower left), and 1/100 reduction of the long wave (lower right).

u(x, t) = Qe−ateikx,

where i =
√
−1 is the imaginary unit. We can add such functions, often referred

to as wave components, to make a Fourier representation of a general solution of
the diffusion equation:

u(x, t) ≈
∑

k∈K
bke
−αk2teikx, (51)

where K is a set of an infinite number of k values needed to construct the
solution. In practice, however, the series is truncated and K is a finite set of k
values need build a good approximate solution. Note that (50) is a special case
of (51) where K = {π, 100π}, bπ = 1, and b100π = 0.1.

The amplitudes bk of the individual Fourier waves must be determined from
the initial condition. At t = 0 we have u ≈∑k bk exp (ikx) and find K and bk
such that

I(x) ≈
∑

k∈K
bke

ikx . (52)

15

(The relevant formulas for bk come from Fourier analysis, or equivalently, a
least-squares method for approximating I(x) in a function space with basis
exp (ikx).)

Much insight about the behavior of numerical methods can be obtained by
investigating how a wave component exp (−αk2t) exp (ikx) is treated by the
numerical scheme. It appears that such wave components are also solutions of
the schemes, but the damping factor exp (−αk2t) varies among the schemes. To
ease the forthcoming algebra, we write the damping factor as An. The exact
amplification factor corresponding to A is Ae = exp (−αk2∆t).

2.4 Analysis of the finite difference schemes
We have seen that a general solution of the diffusion equation can be built as a
linear combination of basic components

e−αk
2teikx .

A fundamental question is whether such components are also solutions of the
finite difference schemes. This is indeed the case, but the amplitude exp (−αk2t)
might be modified (which also happens when solving the ODE counterpart
u′ = −αu). We therefore look for numerical solutions of the form

unq = Aneikq∆x = Aneikx, (53)

where the amplification factor A must be determined by inserting the component
into an actual scheme.

Stability. The exact amplification factor is Ae = exp (−α2k2∆t). We should
therefore require |A| < 1 to have a decaying numerical solution as well. If
−1 ≤ A < 0, An will change sign from time level to time level, and we get stable,
non-physical oscillations in the numerical solutions that are not present in the
exact solution.

Accuracy. To determine how accurately a finite difference scheme treats one
wave component (53), we see that the basic deviation from the exact solution is
reflected in how well An approximates Ane , or how well A approximates Ae.

2.5 Analysis of the Forward Euler scheme
The Forward Euler finite difference scheme for ut = αuxx can be written as

[D+
t u = αDxDxu]nq .

Inserting a wave component (53) in the scheme demands calculating the terms

eikq∆x[D+
t A]n = eikq∆xAn

A− 1
∆t ,

16

and

AnDxDx[eikx]q = An
(
−eikq∆x 4

∆x2 sin2
(
k∆x

2

))
.

Inserting these terms in the discrete equation and dividing by Aneikq∆x leads to

A− 1
∆t = −α 4

∆x2 sin2
(
k∆x

2

)
,

and consequently

A = 1− 4F sin2
(
k∆x

2

)
, (54)

where

F = α∆t
∆x2 (55)

is the numerical Fourier number. The complete numerical solution is then

unq =
(

1− 4F sin2
(
k∆x

2

))n
eikq∆x . (56)

Stability. We easily see that A ≤ 1. However, the A can be less than −1,
which will lead to growth of a numerical wave component. The criterion A ≥ −1
implies

4F sin2(p/2) ≤ 2 .

The worst case is when sin2(p/2) = 1, so a sufficient criterion for stability is

F ≤ 1
2 , (57)

or expressed as a condition on ∆t:

∆t ≤ ∆x2

2α . (58)

Note that halving the spatial mesh size, ∆x→ 1
2∆x, requires ∆t to be reduced

by a factor of 1/4. The method hence becomes very expensive for fine spatial
meshes.

Accuracy. Since A is expressed in terms of F and the parameter we now call
p = k∆x/2, we also express Ae by F and p:

Ae = exp (−αk2∆t) = exp (−4Fp2) .

Computing the Taylor series expansion of A/Ae in terms of F can easily be done
with aid of sympy:

17

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols(’F p’)
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is

A

Ae
= 1− 4F sin2 p+ 2Fp2 − 16F 2p2 sin2 p+ 8F 2p4 + · · ·

Recalling that F = α∆t/∆x, p = k∆x/2, and that sin2 p ≤ 1, we realize that
the dominating error terms are at most

1− 4α ∆t
∆x2 + α∆t− 4α2∆t2 + α2∆t2∆x2 + · · · .

2.6 Analysis of the Backward Euler scheme
Discretizing ut = αuxx by a Backward Euler scheme,

[D−t u = αDxDxu]nq ,

and inserting a wave component (53), leads to calculations similar to those
arising from the Forward Euler scheme, but since

eikq∆x[D−t A]n = Aneikq∆x
1−A−1

∆t ,

we get

1−A−1

∆t = −α 4
∆x2 sin2

(
k∆x

2

)
,

and then

A =
(
1 + 4F sin2 p

)−1
. (59)

The complete numerical solution can be written

unq =
(
1 + 4F sin2 p

)−n
eikq∆x . (60)

Stability. We see from (59) that 0 < A < 1, which means that all numerical
wave components are stable and non-oscillatory for any ∆t > 0.

18

2.7 Analysis of the Crank-Nicolson scheme
The Crank-Nicolson scheme can be written as

[Dtu = αDxDxu
x]n+ 1

2
q ,

or

[Dtu]n+ 1
2

q = 1
2α
(
[DxDxu]nq + [DxDxu]n+1

q

)
.

Inserting (53) in the time derivative approximation leads to

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 −A− 1

2

∆t = Aneikq∆x
A− 1

∆t .

Inserting (53) in the other terms and dividing by Aneikq∆x gives the relation

A− 1
∆t = −1

2α
4

∆x2 sin2
(
k∆x

2

)
(1 +A),

and after some more algebra,

A = 1− 2F sin2 p

1 + 2F sin2 p
. (61)

The exact numerical solution is hence

unq =
(

1− 2F sin2 p

1 + 2F sin2 p

)n
eikp∆x . (62)

Stability. The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0.

2.8 Summary of accuracy of amplification factors
We can plot the various amplification factors against p = k∆x/2 for different
choices of the F parameter. Figures 2, 3, and 4 show how long and small
waves are damped by the various schemes compared to the exact damping. As
long as all schemes are stable, the amplification factor is positive, except for
Crank-Nicolson when F > 0.5.

The effect of negative amplification factors is that An changes sign from one
time level to the next, thereby giving rise to oscillations in time in an animation
of the solution. We see from Figure 2 that for F = 20, waves with p ≥ π/2
undergo a damping close to −1, which means that the amplitude does not decay
and that the wave component jumps up and down in time. For F = 2 we have a
damping of a factor of 0.5 from one time level to the next, which is very much
smaller than the exact damping. Short waves will therefore fail to be effectively
dampened. These waves will manifest themselves as high frequency oscillatory
noise in the solution.

19

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=20

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=2

BE
exact
CN
FE

Figure 2: Amplification factors for large time steps.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=0.5

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

1.0

0.5

0.0

0.5

1.0 C=0.25

BE
exact
CN
FE

Figure 3: Amplification factors for time steps around the Forward Euler stability
limit.

A value p = π/4 corresponds to four mesh points per wave length of eikx,
while p = π/2 implies only two points per wave length, which is the smallest
number of points we can have to represent the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we
choose an initial condition that leads to short waves with significant amplitude.
A discontinuous I(x) will in particular serve this purpose.

Run F =

Exercise 1: Use an analytical solution to formulate a 1D
test
This exercise explores the exact solution (48). We shall formulate a diffusion
problem in half of the domain for half of the Gaussian pulse. Then we shall
investigate the impact of using an incorrect boundary condition, which we in
general cases often are forced due if the solution needs to pass through finite
boundaries undisturbed.

a) The solution (48) is seen to be symmetric at x = c, because ∂u/∂x = 0
always vanishes for x = c. Use this property to formulate a complete initial

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 C=0.1

BE
exact
CN
FE

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p=k∆x

0.75

0.80

0.85

0.90

0.95

1.00 C=0.01

BE
exact
CN
FE

Figure 4: Amplification factors for small time steps.

boundary value problem in 1D involving the diffusion equation ut = αuxx on
[0, L] with ux(0, t) = 0 and u(L, t) known.

b) Use the exact solution to set up a convergence rate test for an implementation
of the problem. Investigate if a one-sided difference for ux(0, t), say u0 = u1,
destroys the second-order accuracy in space.

c) Imagine that we want to solve the problem numerically on [0, L], but we do
not know the exact solution and cannot of that reason assign a correct Dirichlet
condition at x = L. One idea is to simply set u(L, t) = 0 since this will be
an accurate approximation before the diffused pulse reaches x = L and even
thereafter it might be a satisfactory condition. Let ue be the exact solution
and let u be the solution of ut = αuxx with an initial Gaussian pulse and the
boundary conditions ux(0, t) = u(L, t) = 0. Derive a diffusion problem for
the error e = ue − u. Solve this problem numerically using an exact Dirichlet
condition at x = L. Animate the evolution of the error and make a curve plot of
the error measure

E(t) =

√√√√
∫ L

0 e2dx
∫ L

0 udx
.

Is this a suitable error measure for the present problem?

d) Instead of using u(L, t) = 0 as approximate boundary condition for letting the
diffused Gaussian pulse out of our finite domain, one may try ux(L, t) = 0 since
the solution for large t is quite flat. Argue that this condition gives a completely
wrong asymptotic solution as t→ 0. To do this, integrate the diffusion equation
from 0 to L, integrate uxx by parts (or use Gauss’ divergence theorem in 1D) to
arrive at the important property

d

dt

∫ L

0
u(x, t)dx = 0,

implying that
∫ L

0 udx must be constant in time, and therefore

21

∫ L

0
u(x, t)dx =

∫ L

0
I(x)dx .

The integral of the initial pulse is 1.

e) Another idea for an artificial boundary condition at x = L is to use a cooling
law

− αux = q(u− uS), (63)

where q is an unknown heat transfer coefficient and uS is the surrounding
temperature in the medium outside of [0, L]. (Note that arguing that uS is
approximately u(L, t) gives the ux = 0 condition from the previous subexercise
that is qualitatively wrong for large t.) Develop a diffusion problem for the error
in the solution using (63) as boundary condition. Assume one can take uS = 0
"outside the domain" as u→ 0 for x→∞. Find a function q = q(t) such that
the exact solution obeys the condition (63). Test some constant values of q
and animate how the corresponding error function behaves. Also compute E(t)
curves as suggested in subexercise b).
Filename: diffu_symmetric_gaussian.py.

Exercise 2: Use an analytical solution to formulate a 2D
test
Generalize (48) to multi dimensions by assuming that one-dimensional solutions
can be multiplied to solve ut = α∇2u. Use this solution to formulate a 2D test
case where the peak of the Gaussian is at the origin and where the domain is a
rectangule in the first quadrant. Use symmetry boundary conditions ∂u/∂n =
0 whereever possible, and use exact Dirichlet conditions on the remaining
boundaries. Filename: diffu_symmetric_gaussian_2D.pdf.

Exercise 3: Examine stability of a diffusion model with a
source term
Consider a diffusion equation with a linear u term:

ut = αuxx + βu .

a) Derive in detail a Forward Euler scheme, a Backward Euler scheme, and a
Crank-Nicolson for this type of diffusion model. Thereafter, formulate a θ-rule
to summarize the three schemes.

b) Assume a solution like (49) and find the relation between a, k, α, and β.

c) Calculate the stability of the Forward Euler scheme. Design numerical
experiments to confirm the results.

d) Repeat c) for the Backward Euler scheme.

22

e) Repeat c) for the Crank-Nicolson scheme.

f) How does the extra term bu impact the accuracy of the three schemes?

Hint. Compare the numerical and exact amplification factors, either in graphs
or by Taylor series expansion (or both).
Filename: diffu_stab_uterm.pdf.

3 Diffusion in heterogeneous media
Diffusion in heterogeneous media will normally imply a non-constant diffusion
coefficient α = α(x). A 1D diffusion model with such a variable diffusion
coefficient reads

∂u

∂t
= ∂

∂x

(
α(x) ∂u

∂x2

)
, x ∈ (0, L), t ∈ (0, T] (64)

u(x, 0) = I(x), x ∈ [0, L] (65)
u(0, t) = UL, t > 0, (66)
u(L, t) = U0, t > 0 . (67)

A short form of the diffusion equation with variable coefficients is ut = (αux)x.

3.1 Stationary solution
As t→∞, the solution of the above problem will approach a stationary limit
where ∂u/∂t = 0. The governing equation is then

d

dx

(
α
du

dx

)
= 0, (68)

with boundary conditions u(0) = U0 and u(L) = uL. It is possible to obtain an
exact solution of (68) for any α. Integrating twice and applying the boundary
conditions to determine the integration constants gives

u(x) = U0 + (UL − U0)
∫ x

0 (α(ξ))−1dξ
∫ L

0 (α(ξ))−1dξ
. (69)

3.2 Piecewise constant medium
Consider a medium built of M layers. The boundaries between the layers are
denoted by b0, . . . , bM , where b0 = 0 and bM = L. If the material in each layer
potentially differs from the others, but is otherwise constant, we can express α
as a piecewise constant function according to

23

α(x) =





α0, b0 ≤ x < b1,
...
αi, bi ≤ x < bi+1,
...
α0, bM−1 ≤ x ≤ bM .

(70)

The exact solution (69) in case of such a piecewise constant α function is easy
to derive. Assume that x is in the m-th layer: x ∈ [bm, bm+1]. In the integral∫ x

0 (a(ξ))−1dξ we must integrate through the first m− 1 layers and then add the
contribution from the remaining part x− bm into the m-th layer:

u(x) = U0 + (UL − U0)
∑m−1
j=0 (bj+1 − bj)/α(bj) + (x− bm)/α(bm)

∑M−1
j=0 (bj+1 − bj)/α(bj)

(71)

Remark. It may sound strange to have a discontinuous α in a differential
equation where one is to differentiate, but a discontinuous α is compensated by
a discontinuous ux such that αux is continues and therefore can be differentiated
as (αux)x.

3.3 Implementation
Programming with piecewise function definition quickly becomes cumbersome
as the most naive approach is to test for which interval x lies, and then start
evaluating a formula like (71). In Python, vectorized expressions may help
to speed up the computations. The convenience classes PiecewiseConstant
and IntegratedPiecewiseConstant were made to simplify programming with
functions like (3.2) and expressions like (71). These utilities not only represent
piecewise constant functions, but also smoothed versions of them where the
discontinuities can be smoothed out in a controlled fashion. This is advantageous
in many computational contexts (although seldom for pure finite difference
computations of the solution u).

The PiecewiseConstant class is created by sending in the domain as a
2-tuple or 2-list and a data object describing the boundaries b0, . . . , bM and the
corresponding function values α0, . . . , αM−1. More precisely, data is a nested
list, where data[i][0] holds bi and data[i][1] holds the corresponding value
αi, for i = 0, . . . ,M − 1. Given bi and αi in arrays b and a, it is easy to fill out
the nested list data.

In our application, we want to represent α and 1/α as piecewise constant
function, in addition to the u(x) function which involves the integrals of 1/α. A
class creating the functions we need and a method for evaluating u, can take the
form

24

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].
"""

def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

inv_a = 1/a is needed in formulas
inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
Denominator in the exact formula is constant
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u(x)
along with α(x) (which works well as long as maxα(x) is of the same size as
max u = max(U0, UL)).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, ’b’)
plt.hold(’on’) # Matlab style
plt.plot(x, y_a, ’r’)
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend([’solution u’, ’coefficient a’], loc=’upper left’)
if self.eps > 0:

plt.title(’Smoothing eps: %s’ % self.eps)
plt.savefig(’tmp.pdf’)
plt.savefig(’tmp.png’)
plt.show()

Figure 5 shows the case where

25

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
solution u
coefficient a

Figure 5: Solution of the stationary diffusion equation corresponding to a
piecewise constant diffusion coefficient.

By adding the eps parameter to the constructor of the SerialLayers class,
we can experiment with smoothed versions of α and see the (small) impact on u.
Figure 6 shows the result.

26

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6 Smoothed discontinuous coefficient (eps=0.05)

solution u
coefficient a

Figure 6: Solution of the stationary diffusion equation corresponding to a
smoothed piecewise constant diffusion coefficient.

4 Exercises
Exercise 4: Stabilizing the Crank-Nicolson method by Ran-
nacher time stepping
It is well known that the Crank-Nicolson method may give rise to non-physical
oscillations in the solution of diffusion equations if the initial data exhibit jumps
(see Section 2.7). Rannacher [1] suggested a stabilizing technique consisting of
using the Backward Euler scheme for the first two time steps with step length
1
2∆t. One can generalize this idea to taking 2m time steps of size 1

2∆t with the
Backward Euler method and then continuing with the Crank-Nicolson method,
which is of second-order in time. The idea is that the high frequencies of the
initial solution are quickly damped out, and the Backward Euler scheme treats
these high frequencies correctly. Thereafter, the high frequency content of the
solution is gone and the Crank-Nicolson method will do well.

Test this idea for m = 1, 2, 3 on a diffusion problem with a discontinuous
initial condition. Measure the convergence rate using the solution (45) with the
boundary conditions (46)-(47) for t values such that the conditions are in the
vicinity of ±1. For example, t < 5a1.6 · 10−2 makes the solution diffusion from a

27

step to almost a straight line. The program diffu_erf_sol.py shows how to
compute the analytical solution.

Project 5: Energy estimates for diffusion problems
This project concerns so-called energy estimates for diffusion problems that can
be used for qualitative analytical insight and for verification of implementations.

a) We start with a 1D homogeneous diffusion equation with zero Dirichlet
conditions:

ut = αuxx, x ∈ Ω = (0, L), t ∈ (0, T], (72)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (73)

u(x, 0) = I(x), x ∈ [0, L] . (74)

The energy estimate for this problem reads

||u||L2 ≤ ||I||L2 , (75)

where the || · ||L2 norm is defined by

||g||L2 =

√∫ L

0
g2dx . (76)

The quantify ||u||L2 or 1
2 ||u||L2 is known as the energy of the solution, although it

is not the physical energy of the system. A mathematical tradition has introduced
the notion energy in this context.

The estimate (75) says that the "size of u" never exceeds that of the initial
condition, or more equivalently, that the area under the u curve decreases with
time.

To show (75), multiply the PDE by u and integrate from 0 to L. Use that
uut can be expressed as the time derivative of u2 and that uxxu can integrated
by parts to form an integrand u2

x. Show that the time derivative of ||u||2L2 must
be less than or equal to zero. Integrate this expression and derive (75).

b) Now we address a slightly different problem,

ut = αuxx+ f(x, t), x ∈ Ω = (0, L), t ∈ (0, T], (77)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (78)

u(x, 0) = 0, x ∈ [0, L] . (79)

The associated energy estimate is

||u||L2 ≤ ||f ||L2 . (80)

(This result is more difficult to derive.)

28

Now consider the compound problem with an initial condition I(x) and a
right-hand side f(x, t):

ut = αuxx+ f(x, t), x ∈ Ω = (0, L), t ∈ (0, T], (81)
u(0, t) = u(L, t) = 0, t ∈ (0, T], (82)

u(x, 0) = I(x), x ∈ [0, L] . (83)

Show that if w1 fulfills (72)-(74) and w2 fulfills (77)-(79), then u = w1 + w2 is
the solution of (81)-(83). Using the triangle inequality for norms,

||a+ b|| ≤ ||a||+ ||b||,
show that the energy estimate for (81)-(83) becomes

||u||L2 ≤ ||I||L2 + ||f ||L2 . (84)

c) One application of (84) is to prove uniqueness of the solution. Suppose u1
and u2 both fulfill (81)-(83). Show that u = u1 − u2 then fulfills (81)-(83) with
f = 0 and I = 0. Use (84) to deduce that the energy must be zero for all times
and therefore that u1 = u2, which proves that the solution is unique.

d) Generalize (84) to a 2D/3D diffusion equation ut = ∇ · (α∇u) for x ∈ Ω.

Hint. Use integration by parts in multi dimensions:
∫

Ω
u∇ · (α∇u) dx = −

∫

Ω
α∇u · ∇udx+

∫

∂Ω
uα

∂u

∂n
,

where ∂u
∂n = n · ∇u, n being the outward unit normal to the boundary ∂Ω of the

domain Ω.

e) Now we also consider the multi-dimensional PDE ut = ∇ · (α∇u). Integrate
both sides over Ω and use Gauss’ divergence theorem,

∫
Ω∇ · q dx =

∫
∂Ω q · n ds

for a vector field q. Show that if we have homogeneous Neumann conditions on
the boundary, ∂u/∂n = 0, area under the u surface remains constant in time
and

∫

Ω
udx =

∫

Ω
I dx . (85)

f) Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a
source term f , initial condition I, and zero Dirichlet or Neumann conditions on
the whole boundary.

We can use (84) and (85) as a partial verification of the code. Choose some
functions f and I and check that (84) is obeyed at any time when zero Dirichlet
conditions are used. Iterate over the same I functions and check that (85) is
fulfilled when using zero Neumann conditions.

29

g) Make a list of some possible bugs in the code, such as indexing errors in
arrays, failure to set the correct boundary conditions, evaluation of a term at a
wrong time level, and similar. For each of the bugs, see if the verification tests
from the previous subexercise pass or fail. This investigation shows how strong
the energy estimates and the estimate (85) are for pointing out errors in the
implementation.
Filename: diffu_energy.pdf.

References
[1] R. Rannacher. Finite element solution of diffusion problems with irregular

data. Numerische Mathematik, 43:309–327, 1984.

30

Index
amplification factor, 16

diffusion equation, 1D, 2

energy estimates (diffusion), 28
explicit discretization methods, 3

heat equation, 1D, 2

implicit discretization methods, 5

stationary solution, 2

31

