‘ The 1D diffusion equation

The famous diffusion equation, also known as the heat equation,

Study guide: Finite difference schemes for diffusion

reads
processes
Ou Pu
o ar
ot Ox?
Hans Petter Langtangen':?
gtang Here,
Center for Biomedical Computing, Simula Research Laboratory® o u(x,t): unknown
Department of Informatics, University of Oslo? o a: diffusion coefficient

Alternative, compact notation:
Nov 18, 2014

Ur = Qilxx

‘ The initial-boundary value problem for 1D diffusion ‘ Step 1: Discretizing the domain

du &u Mesh in time:
— =as—, ,L), , T 1 ’
%= x € (0,L), t€(0,T] (1)
,0)=1 0,L 2
u(x,0) = 1x). xefo.l @) O=to<t1 <th< - <ty_1 <ty =T (5)
u(0,t) =0, t>0, 3)
u(L,t) =0, t>0. (4) Mesh in space:
Note: 0=x0 <x1 <Xx2<---<Xpy—1 <Xy, =1L (6)

o First-order derivative in time: one initial condition Uniform mesh with constant mesh spacings At and Ax:

@ Second-order derivative in space: a boundary condition at each

point of the boundary (2 points in 1D) i i
. : i xi =iAx, i=0,...,Ny, ti=nAt, n=0,...,N; (7)
@ Numerous applications throughout physics and biology

‘ The discrete solution ‘ Step 2: Fulfilling the equation at the mesh points

o The numerical solution is a mesh function: v} ~ ue(x;, t,)
o Finite difference stencil (or scheme): equation for u!" involving

neighboring space-time points . . . o
Require the PDE (1) to be fulfilled at an arbitrary interior mesh

Stencil at interior point point (x;, ty) leads to

7] 92
. a“()ﬂw tn) = aﬁu(x,-, tn) (®)
3 0 Applies to all interior mesh points: i =1,..., Ny — 1 and

n=1,... N, —1

index n

2 (@) (@) ©) For n = 0 we have the initial conditions u = /(x) and u; =0

At the boundaries i = 0, Ny we have the boundary condition v = 0.

index i

‘ Step 3: Replacing derivatives by finite differences

Use a forward difference in time and a centered difference in space
(Forward Euler scheme):

[Dff u = aDyDyu]? 9)
Written out,
”:Hl uf Uiy — 207 +uf (10)
At Ax?
Initial condition: u? =1(x), i=0,1,..., Ny

‘ The mesh Fourier number

There is only one parameter, F, in the discrete model: F lumps
mesh parameters At and Ax with the only physical parameter, the
diffusion coefficient «. The value F and the smoothness of /(x)
govern the quality of the numerical solution.

‘ The computational algorithm for the Forward Euler scheme

O compute u® = I(x;), i =0,..., Ny
Q forn=0,1,... N,
@ compute u,-’“rl from (11) for all the internal spatial points
i=1,... Ne—1
@ set the boundary values u,f'“ =0fori=0andi= N,

We visit one mesh point (x;, tn1+1) at a time, and we have an
explicit formula for computing the associated u}'*l value. The
spatial points can be updated in any sequence, but the time levels
t, must be updated in cronological order: t, before tpiq.

‘ Step 4: Formulating a recursive algorithm

o Nature of the algorithm: compute v in space at
t = At,2At,3At, ...

o Two time levels are involved in the general discrete equation:
n+1and n

o u is already computed for i =0, ..., Ny, and uf*! is the
unknown quantity

Solve the discretized PDE for the unknown u*:

uf = uf 4+ F (ufir - 207 +uly) (11)
where
At
F=a—C
CAx2

‘ The finite difference stencil

Stencil at interior point

5

4
c 3 o
£
$
=, 0 0O 0O

o A A
1
0
0 1 2 3 4 5
index i
‘ The Py implementation of the computational algorithm

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]

F = a*dt/dx**2

= zeros (Nx+1)

_ zeros (Nx+1)

e
N
1

Set initial condition u(z,0) = I(z)
for i in range(0, Nx+1):
u_1[il = I(x[il)

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):
ulil = uw_1[i] + F*(u_1[i-1] - 2%u_1[i] + u_1[i+1])

Insert boundary conditions
uf0] = 0; ulNx] =0

Update u_1 before next step

u_1[:1= u

or more efficient switch of references
#ul, u = u, u_l

‘ Moving finite difference stencil

web page or a movie file.

‘ Forward Euler applied to an initial plug profile

Ny = 50. The method results in a growing, unstable solution if

F > 0.5. . .
Choosing F = 0.5 gives a strange Lowering F to 0.25 gives a
saw tooth-like curve. smooth (expected) solution.
Link to movie file Link to movie file

‘ Backward Euler scheme

Backward difference in time, centered difference in space:

[Df u = DyxDyu)? (12)
Written out:
n_ -1 uf = 2u? 4 u?
i AZ: — it AX:2 i-1 (13)

Assumption: u,f"1 is computed, but all quantities at the new time

level t, are unknown.

We cannot solve wrt uf’ because that unknown value is coupled to
two other unknown values: uf' ; and uf,;. That is, all the new
unknown values are coupled to each other in a linear system of
algebraic equations.

‘ Demo program

o Program: diffulD_u0.py
@ Produces animation on the screen

o Each frame stored in tmp_frame’04d.png files
tmp_£frame0000.png, tmp_frame0001.png, ...

How to make movie file in modern formats:

‘ Forward Euler applied to a Gaussian profile

Ny =50. F=0.5.

Link to movie file Link to movie file

‘ Let’s write out the equations for N,

Equation (13) written for i =1,..., Nx — 1 = 1,2 becomes

n—1

uf — uf uf —2uf + ug
=« 14
At Y AR (1)

-1 n nn

ulf — uf uf —2uf + uf
= 15
At Y Ax (19)

(The boundary values ug and uf are known as zero.)

Collecting the unknown new values on the left-hand side and
writing as 2 X 2 matrix system:

1+2F —F uf \ et
-F 1+42F ul)T\ ug?

explicit and implicit

Two classes of discretization me

Discretization methods that lead linear systems are known as
implicit methods.

Discretization methods that avoid linear systems and have an
explicit formula for each new value of the unknown are called
explicit methods.

‘ A is very sparse: a tridiagonal matrix

Ao Agr 0 e e e 0
Aig Aip O :
0 A1 Ay A
—_— . 0
A —
0 Aii-1 Aii At
- - - 0
: . Any—1.1
0 o e e 0 Anmer Anon
(17)
‘ The ri
bo
by
b= 4, (21)
bNX
with
by =0 (22)
bi=ull i=1,...,Ne—1 (23)
by, =0 (24)

‘ The linear system for a general N,

—Fouly + (1+2F,) uf — Fouflyy = uf (16)
fori=1,...,Nx — 1.

What are the unknowns in the linear system?

Q either uf for i =1,..., Ny —1 (all internal spatial mesh points)

@ oru?, i=0,..., Ny (all spatial points)

The linear system in matrix notation:

AU=b, U=(u.....u})

‘ Detailed expressions for the matrix entries

The nonzero elements are given by

Aji1=—Fo (18)
Aii=1+2F, (19)
Aiiy1=—Fo (20)

fori=1,... Ny—1.

The equations for the boundary points correspond to

Ajo=1 Ap1=0, Ay n-1=0, Ay =1

Naive Python implementation with a dense

(Ny + 1) X (Ny + 1) matrix

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, N+1) # mesh points in time
zeros (Nx+1)
u_l = zeros(Nx+1)

e

Data structures for the linear system
= zeros((Nx+1, Nx+1))
= zeros (Nx+1)
for i in range(l, Nx):
Ali,i-1] = -F
Afi,i+1] = -F
A[i,i] = 1 + 24F
A[0,0] = A[Nx,Nx] = 1

Set initial condition u(z,0) = I(z)
for i in range(0, Nx+1):

u_1[i] = I(x[il)
import scipy.linalg

for n in range(0, Nt):
Compute b and solve linear system
for i in range(l, Nx):

Wr51 -

A sparse matrix representation will dramatically reduce the

computational complexity

o With a dense matrix, the algorithm leads to O(N2) operations

o Utilizing the sparsity, the algorithm has complexity O(Ny)!

o scipy.sparse enables storage and calculations with the three
nonzero diagonals only

Representation of sparse matriz and right-hand side

diagonal = zeros(Nx+1)
lower = zeros (Nx)
upper - zeros (W)
b = zeros (Nx+1)

‘ Backward Euler applied to a plug profile

Ny =50. F=0.5.

Link to movie file

‘ nk-Nicolson scheme

The PDE is sampled at points (x;,t,, 1) (at the spatial mesh
2
points, but in between two temporal mesh points).

17} ?
au(xi«, thy1) = Oﬁ“(xh tny1)

fori=1,...,Ny—landn=0,...,N; — L.

Centered differences in space and time:

1
[Dyu = oDXDXLI];'+E

‘ Computing the sparse matrix

Precompute sparse matriz
diagonall[:] = 1 + 2+F
lower[:] = -F #1

upper[:] = -F #1

Insert boundary conditions
diagonal[0] = 1

upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

import scipy.sparse
A = scipy.sparse.diags (
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

Set initial condition
for i in range(0,Nx+1):
u_1[il = I(x[il)

for n in range(0, Nt):
b= u.t
b[0] = b[-1] = 0.0 # boundary conditions
ul:] = scipy.sparse.linalg.spsolve(A, b)
Switch wvariables before next step
ul, u=u, ul

‘ Backward Euler applied to a Gaussian profile

Ny = 50.

Link to movie file F=5.

Link to movie file

‘ Averaging in time is necessary in the Crank-Nicolson scheme

Right-hand side term:
1 nl n+l a4l
A u; = 2u; + Uy

nt3
Problem: u; "2 is not one of the unknowns we compute.

. nt3 . .
Solution: replace u; ' 2 by an arithmetic average:

1
nt3
u; 2

(uf +)

N =

In compact notation (arithmetic average in time 7"):

1
n+}
,

[Dru = aDxDx1']

‘ Crank-Nicolsoon scheme written ‘ Crank-Nicolson applied to a plug

1 1
”FH*EF(”?:HI*2“;1“*”;?11) = “:'"‘FEF(U;'A*?U;"F”?H) (25)

Observe:
@ The unknowns are ul-"fll, u,f'“ﬁ u;’*ll
o These unknowns are coupled to each other (in a linear system)
o Must solve AU = b at each time level

Crank-Nicolson never blows up, so any F can be used (modulo loss
of accuracy).

N, =50. F =5 gives Ny =50. F = 0.5 gives a smooth
Now, instabilities. solution.
Link to movie file Link to movie file
1
A1 = —5Fo (26)
1
Aii=5+Fo (27)
1
Ai-,i+1 = *EFo (28)

for internal points. For boundary points,

‘ Crank-Nicolson applied to a Gaussian profile ‘ The 6 rule

The 0 rule condenses a family of finite difference approximations in
time to one formula

o 0 =0 gives the Forward Euler scheme in time
o § =1 gives the Backward Euler scheme in time
e 0= % gives the Crank-Nicolson scheme in time
Ny = 50. F—s Applied to uy = auyy:
Link to movie file .) e
Link to movie file

u?
+(1-0)—tL

i i PRiis!
Ax?

At

u_n+1 —yn un+1 _ 2u’(1+1 4 u’_njll
=
Ax?

—2ul + u,-"71>

Matrix entries:

Aiic1=—Fo0, Ajj=1+2F0 A1 =—Fof

Right-hand side:

‘ The Laplace and Poisson equation We can solve 1D Poisson/Laplace equation by going to

Laplace equation:

infinity in time-dependent diffusion equations

V2u=0, 1D:u"(x)=0

Poisson equation:
Looking at the numerical schemes, F — oo leads to the Laplace or
~Viy=f, 1D: — U”(X) = f(x) Poisson equations (without f or with f, resp.).

Good news: choose F large in the BE or CN schemes and one time

These are limiting behavior of time-dependent diffusion equations if . i >
step is enough to produce the stationary solution for t — cc.

Then up = auxx + 0 in the limit t — oo reduces to

ux +F =0

‘ Extensions

These extensions are performed exactly as for a wave equation as
they only affect the spatial derivatives (which are the same as in
the wave equation).

o Variable coefficients
o Neumann and Robin conditions
e 2D and 3D

Future versions of this document will for completeness and
independence of the wave equation document feature info on the
three points. The Robin condition is new, but straightforward to
handle:

0% = hr(o— Us), [-aDew = hr(u— V)

‘ Properties of the solution

The PDE

Up = Qlixy

admits solutions

u(x, £) = Qe~*** sin (kx)
Observations from this solution:

o The initial shape /(x) = Qsin kx undergoes a damping
exp (—ak?t)

o The damping is very strong for short waves (large k)

o The damping is weak for long waves (small k)

o Consequence: u is smoothened with time

High frequency components of the solution are very quickly

damped

233601 ts6r601

‘ Analysis of schemes for the diffusion equation

Solutions of diffusion problems are expected to be smooth.
Can we understand when they are not?

Method: CN, C=5, t=0.206897

1
0.8
\
0.6 \

0.4 \

0.2

Test problem:

Up = Uxx, x€(0,1), t€(0,T]
u(0,t) = u(1,t) =0, te(0,T]
u(x,0) = sin(mx) + 0.1sin(1007x)

Exact solution:

u(x, t) = et sin(mx) + 0.1e77 10 sin(1007x)

‘ Damping of a discontinuity; problem

Two pieces of a material, at different temperatures, are brought in
contact at t = 0. Assume the end points of the pieces are kept at
the initial temperature. How does the heat flow from the hot to the
cold piece?

Or: A huge ion concentration on one side of a synapse in the brain
(concentration discontinuity) is released and ions move by diffusion.

‘ Damping of a discontinuity; model

Damping of a discontinuity; Backward Euler scheme

Assume a 1D model is sufficient (e.g., insulated rod):

Discrete model:
U, x<L)2
u(x,0) = { Un, x> LJ2 D7 u = aDD,]?

Ju &u

_ _ results in a (tridiagonal) linear system
ikl u(0,t) = UL, u(L, t) = Ug (gonal)

Method: BE, C=0.5, t=0.000000

-1
—Ful y + (1 +2F) uf — Fulyy =]
—
\ where
08
06 At
F=a—
. ‘ Ax?
02 \ is the mesh Fourier number
B |
o o2 0 o os 2

Damping of a discontinuity; Backward Euler simulation

‘ Damping of a discontinuity; Forward Euler scheme
F=1
2

Discrete model:

[Dff u = aDyDy]?
Movie . . .
results in the explicit updating formula

n+l _ n n n n
uf ™t =l + F (0l — 207 + ufly)

Damping of a discontinuity; Forward Euler simulation F =

Damping of a discontinuity; Crank-Nicolson scheme

Discrete model:
Movie

[Deu = aDyD,a"]?

results in a tridiagonal linear system

Damping of a discontinuity; Crank-Nicolson simulation

F=5

Movie

Analysis of the finite difference schemes

Stability:

@ |A] < 1: decaying numerical solutions (as we want)

o A < 0: oscillating numerical solutions (as we do not want)
Accuracy:

o Compare numerical and exact amplification factor: A vs
Ae = exp (—ak?At)

‘ Results for stability
We always have A < 1. The condition A > —1 implies

4F sin? p<2
The worst case is when Sinzp =1, so a sufficient criterion for
stability is
1
F<>
-2
or:
Ax?
At < 22X
2a

Implications of the stability result

Less favorable criterion than for uy = c?ux: halving Ax implies
time step %At (not just %At as in a wave equation). Need very
small time steps for fine spatial meshes!

‘ Fourier representation

Represent /(x) as a Fourier series
1(x) = Z bre®*
keK
The corresponding sum for v is
u(x, t) ~ Z bye~ kit gikx
kek

Such solutions are also accepted by the numerical schemes, but
with an amplification factor A different from exp (—ak?t):

Ul = Aneltatx _ pngikx

‘ Analysis of the Forward Euler scheme

[Di u = aDyDyulj
Inserting

o= A ekatx

leads to

kAx alt
=1- in2 ([—= = i
A=1—4Fsin (5) , F 2 (mesh Fourier number)

The complete numerical solution is

ug=(1- 4F sin? p)"e* I p — kAx/2

Key spatial discretization quantity: the dimensionless p = %kAx

‘ Analysis of the Backward Euler scheme

[Df u = aDxDyulg
"3 _ Aneikaix
A= (1+4Fsin?p)~*
ufl = (1+ 4F sin? p)"ekatx

Stability: We see that |A] <1 for all At > 0 and that A > 0 (no
oscillations)

‘ Analysis of the Crank-Nicolson scheme Summary of accuracy of amplification factors; large time

steps

The scheme

1
[Dew = aD D5

leads to

A 1—2Fsin?p
1+ 2Fsin’p
.2 n S
= (L22Fsn P s 9
a 1+ 2Fsin?p S I 1) L - N R

Stability: The criteria A > —1 and A < 1 are fulfilled for any
At >0

Summary of accuracy of amplification factors; time steps Summary of accuracy of amplification factors; small time

around the Forward Euler stability limit steps

=e BE

o exact ‘*\.\H_._._—
095} o
o5 aaFE
0.90)
0.
085}
0.5
0.50)
19
05 o5 19 5 20 75 30 10 15 20 75 30 L 3 10 15 29 25 30 b 3 10 15 25 25 39
ek ek . ia.

‘ Observations

@ The key spatial discretization parameter is the dimensionless
p= %kAx
@ The key temporal discretization parameter is the dimensionless
F = aAt/Ax?
o Important: At and Ax in combination with a and k
determine accuracy
o Crank-Nicolson gives oscillations and not much damping of
short waves for increasing F
o These waves will manifest themselves as high frequency
oscillatory noise in the solution
o Steep solutions will have short waves with significant (visible)
amplitudes
@ All schemes fail to dampen short waves enough
The problems of correct damping for u; = uxy is partially
manifested in the similar time discretization schemes for
u'(t) = —au(t).

