
Introduction to computing with finite
difference methods

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Oct 5, 2014

Contents
1 Finite difference methods 5

1.1 A basic model for exponential decay 5
1.2 The Forward Euler scheme . 6
1.3 The Backward Euler scheme . 10
1.4 The Crank-Nicolson scheme . 11
1.5 The unifying θ-rule . 13
1.6 Constant time step . 14
1.7 Compact operator notation for finite differences 15

2 Implementation 16
2.1 Making a solver function . 18
2.2 Verifying the implementation . 24
2.3 Computing the numerical error as a mesh function 25
2.4 Computing the norm of the numerical error 26
2.5 Plotting solutions . 29
2.6 Experiments with computing and plotting 29
2.7 Memory-saving implementation 33

3 Analysis of finite difference equations 35
3.1 Experimental investigation of oscillatory solutions 38
3.2 Exact numerical solution . 40
3.3 Stability . 41
3.4 Comparing amplification factors 43
3.5 Series expansion of amplification factors 44
3.6 The fraction of numerical and exact amplification factors 46
3.7 The global error at a point . 46

3.8 Integrated errors . 46
3.9 Truncation error . 48
3.10 Consistency, stability, and convergence 49

4 Exercises 50

5 Model extensions 51
5.1 Generalization: including a variable coefficient 52
5.2 Generalization: including a source term 53
5.3 Implementation of the generalized model problem 53
5.4 Verifying a constant solution . 55
5.5 Verification via manufactured solutions 56
5.6 Extension to systems of ODEs 57

6 General first-order ODEs 58
6.1 Generic form of first-order ODEs 58
6.2 The θ-rule . 59
6.3 An implicit 2-step backward scheme 59
6.4 Leapfrog schemes . 60
6.5 The 2nd-order Runge-Kutta method 60
6.6 A 2nd-order Taylor-series method 61
6.7 The 2nd- and 3rd-order Adams-Bashforth schemes 61
6.8 The 4th-order Runge-Kutta method 62
6.9 The Odespy software . 63
6.10 Example: Runge-Kutta methods 64
6.11 Example: Adaptive Runge-Kutta methods 66

7 Exercises 68

8 Applications of exponential decay models 72
8.1 Scaling . 72
8.2 Evolution of a population . 73
8.3 Compound interest and inflation 74
8.4 Radioactive Decay . 75
8.5 Newton’s law of cooling . 77
8.6 Decay of atmospheric pressure with altitude 78
8.7 Compaction of sediments . 79
8.8 Vertical motion of a body in a viscous fluid 80
8.9 Decay ODEs from solving a PDE by Fourier expansions 84

9 Exercises 85

2

List of Exercises, Problems, and Projects
Exercise 1 Visualize the accuracy of finite differences p. 50
Exercise 2 Explore the θ-rule for exponential ... p. 51
Exercise 3 Experiment with precision in tests and the ... p. 68
Exercise 4 Implement the 2-step backward scheme p. 69
Exercise 5 Implement the 2nd-order Adams-Bashforth scheme ... p. 69
Exercise 6 Implement the 3rd-order Adams-Bashforth scheme ... p. 69
Exercise 7 Analyze explicit 2nd-order methods p. 69
Problem 8 Implement and investigate the Leapfrog scheme p. 69
Problem 9 Make a unified implementation of many schemes p. 71
Exercise 10 Derive schemes for Newton’s law of cooling p. 85
Exercise 11 Implement schemes for Newton’s law of cooling p. 86
Exercise 12 Find time of murder from body temperature p. 87
Exercise 13 Simulate an oscillating cooling process p. 87
Exercise 14 Radioactive decay of Carbon-14 p. 87
Exercise 15 Simulate stochastic radioactive decay p. 88
Exercise 16 Radioactive decay of two substances p. 88
Exercise 17 Simulate the pressure drop in the atmosphere p. 89
Exercise 18 Make a program for vertical motion in a fluid p. 89
Project 19 Simulate parachuting p. 90
Exercise 20 Formulate vertical motion in the atmosphere p. 91
Exercise 21 Simulate vertical motion in the atmosphere p. 92
Exercise 22 Compute y = |x| by solving an ODE p. 92
Exercise 23 Simulate growth of a fortune with random interest ... p. 92
Exercise 24 Simulate a population in a changing environment ... p. 93
Exercise 25 Simulate logistic growth p. 94
Exercise 26 Rederive the equation for continuous compound ... p. 94

3

Finite difference methods for partial differential equations (PDEs) employ a
range of concepts and tools that can be introduced and illustrated in the context
of simple ordinary differential equation (ODE) examples. This is what we do in
the present document. By first working with ODEs, we keep the mathematical
problems to be solved as simple as possible (but no simpler), thereby allowing
full focus on understanding the key concepts and tools. The choice of topics
in the forthcoming treatment of ODEs is therefore solely dominated by what
carries over to numerical methods for PDEs.

Theory and practice are primarily illustrated by solving the very simple
ODE u′ = −au, u(0) = I, where a > 0 is a constant, but we also address the
generalized problem u′ = −a(t)u+ b(t) and the nonlinear problem u′ = f(u, t).
The following topics are introduced:

• How to think when constructing finite difference methods, with special focus
on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint)
schemes

• How to formulate a computational algorithm and translate it into Python
code

• How to make curve plots of the solutions

• How to compute numerical errors

• How to compute convergence rates

• How to verify an implementation and automate verification through nose
tests in Python

• How to structure code in terms of functions, classes, and modules

• How to work with Python concepts such as arrays, lists, dictionaries,
lambda functions, functions in functions (closures), doctests, unit tests,
command-line interfaces, graphical user interfaces

• How to perform array computing and understand the difference from scalar
computing

• How to conduct and automate large-scale numerical experiments

• How to generate scientific reports

• How to uncover numerical artifacts in the computed solution

• How to analyze the numerical schemes mathematically to understand why
artifacts occur

• How to derive mathematical expressions for various measures of the error
in numerical methods, frequently by using the sympy software for symbolic
computation

4

• Introduce concepts such as finite difference operators, mesh (grid), mesh
functions, stability, truncation error, consistency, and convergence

• Present additional methods for the general nonlinear ODE u′ = f(u, t),
which is either a scalar ODE or a system of ODEs

• How to access professional packages for solving ODEs

• How the model equation u′ = −au arises in a wide range of phenomena in
physics, biology, and finance

The exposition in a nutshell.

Everything we cover is put into a practical, hands-on context. All mathemat-
ics is translated into working computing codes, and all the mathematical
theory of finite difference methods presented here is motivated from a
strong need to understand strange behavior of programs. Two fundamental
questions saturate the text:

• How to we solve a differential equation problem and produce numbers?

• How to we trust the answer?

1 Finite difference methods
Goal.
We explain the basic ideas of finite difference methods using a simple
ordinary differential equation u′ = −au as primary example. Emphasis
is put on the reasoning when discretizing the problem and introduction
of key concepts such as mesh, mesh function, finite difference approxima-
tions, averaging in a mesh, derivation of algorithms, and discrete operator
notation.

1.1 A basic model for exponential decay
Our model problem is perhaps the simplest ordinary differential equation (ODE):

u′(t) = −au(t),

Here, a > 0 is a constant and u′(t) means differentiation with respect to time t.
This type of equation arises in a number of widely different phenomena where
some quantity u undergoes exponential reduction. Examples include radioactive

5

decay, population decay, investment decay, cooling of an object, pressure decay
in the atmosphere, and retarded motion in fluids (for some of these models,
a can be negative as well), see Section 8 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant, but
even more because studying numerical solution methods for this simple ODE
gives important insight that can be reused in much more complicated settings,
in particular when solving diffusion-type partial differential equations.

The analytical solution of the ODE is found by the method of separation of
variables, which results in

u(t) = Ce−at,

for any arbitrary constant C. To formulate a mathematical problem for which
there is a unique solution, we need a condition to fix the value of C. This
condition is known as the initial condition and stated as u(0) = I. That is, we
know the value I of u when the process starts at t = 0. The exact solution is
then u(t) = Ie−at.

We seek the solution u(t) of the ODE for t ∈ (0, T]. The point t = 0 is not
included since we know u here and assume that the equation governs u for t > 0.
The complete ODE problem then reads: find u(t) such that

u′ = −au, t ∈ (0, T], u(0) = I . (1)

This is known as a continuous problem because the parameter t varies continuously
from 0 to T . For each t we have a corresponding u(t). There are hence infinitely
many values of t and u(t). The purpose of a numerical method is to formulate a
corresponding discrete problem whose solution is characterized by a finite number
of values, which can be computed in a finite number of steps on a computer.

1.2 The Forward Euler scheme
Solving an ODE like (1) by a finite difference method consists of the following
four steps:

1. discretizing the domain,

2. fulfilling the equation at discrete time points,

3. replacing derivatives by finite differences,

4. formulating a recursive algorithm.

Step 1: Discretizing the domain. The time domain [0, T] is represented
by a finite number of Nt + 1 points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt
= T . (2)

6

The collection of points t0, t1, . . . , tNt constitutes a mesh or grid. Often the
mesh points will be uniformly spaced in the domain [0, T], which means that
the spacing tn+1 − tn is the same for all n. This spacing is often denoted by ∆t,
in this case tn = n∆t.

We seek the solution u at the mesh points: u(tn), n = 1, 2, . . . , Nt. Note that
u0 is already known as I. A notational short-form for u(tn), which will be used
extensively, is un. More precisely, we let un be the numerical approximation to the
exact solution u(tn) at t = tn. The numerical approximation is a mesh function,
here defined only at the mesh points. When we need to clearly distinguish
between the numerical and the exact solution, we often place a subscript e
on the exact solution, as in ue(tn). Figure 1 shows the tn and un points for
n = 0, 1, . . . , Nt = 7 as well as ue(t) as the dashed line. The goal of a numerical
method for ODEs is to compute the mesh function by solving a finite set of
algebraic equations derived from the original ODE problem.

u

t

u0

u1

u2

u3

u4

u5

t0 t1 t2 t3 t4 t5

Figure 1: Time mesh with discrete solution values.

Since finite difference methods produce solutions at the mesh points only, it
is an open question what the solution is between the mesh points. One can use
methods for interpolation to compute the value of u between mesh points. The
simplest (and most widely used) interpolation method is to assume that u varies
linearly between the mesh points, see Figure 2. Given un and un+1, the value of
u at some t ∈ [tn, tn+1] is by linear interpolation

u(t) ≈ un + un+1 − un

tn+1 − tn
(t− tn) . (3)

7

u

t

u0

u1

u2

u3

u4

u5

t0 t1 t2 t3 t4 t5

Figure 2: Linear interpolation between the discrete solution values (dashed
curve is exact solution).

Step 2: Fulfilling the equation at discrete time points. The ODE is
supposed to hold for all t ∈ (0, T], i.e., at an infinite number of points. Now we
relax that requirement and require that the ODE is fulfilled at a finite set of
discrete points in time. The mesh points t0, t1, . . . , tNt

are a natural (but not
the only) choice of points. The original ODE is then reduced to the following
Nt equations:

u′(tn) = −au(tn), n = 0, . . . , Nt . (4)

Step 3: Replacing derivatives by finite differences. The next and most
essential step of the method is to replace the derivative u′ by a finite differ-
ence approximation. Let us first try a one-sided difference approximation (see
Figure 3),

u′(tn) ≈ un+1 − un

tn+1 − tn
. (5)

Inserting this approximation in (4) results in

un+1 − un

tn+1 − tn
= −aun, n = 0, 1, . . . , Nt − 1 . (6)

8

Later it will be absolutely clear that if we want to compute the solution up
to time level Nt, we only need (4) to hold for n = 0, . . . , Nt − 1 since (6) for
n = Nt − 1 creates an equation for the final value uNt .

Equation (6) is the discrete counterpart to the original ODE problem (1),
and often referred to as finite difference scheme or more generally as the discrete
equations of the problem. The fundamental feature of these equations is that
they are algebraic and can hence be straightforwardly solved to produce the
mesh function, i.e., the values of u at the mesh points (un, n = 1, 2, . . . , Nt).

forward

u(t)

tntn−1 tn+1

Figure 3: Illustration of a forward difference.

Step 4: Formulating a recursive algorithm. The final step is to identify
the computational algorithm to be implemented in a program. The key obser-
vation here is to realize that (6) can be used to compute un+1 if un is known.
Starting with n = 0, u0 is known since u0 = u(0) = I, and (6) gives an equation
for u1. Knowing u1, u2 can be found from (6). In general, un in (6) can be
assumed known, and then we can easily solve for the unknown un+1:

un+1 = un − a(tn+1 − tn)un . (7)

We shall refer to (7) as the Forward Euler (FE) scheme for our model problem.
From a mathematical point of view, equations of the form (7) are known as
difference equations since they express how differences in u, like un+1−un, evolve
with n. The finite difference method can be viewed as a method for turning a
differential equation into a difference equation.

Computation with (7) is straightforward:

9

u0 = I,

u1 = u0 − a(t1 − t0)u0 = I(1− a(t1 − t0)),
u2 = u1 − a(t2 − t1)u1 = I(1− a(t1 − t0))(1− a(t2 − t1)),
u3 = u2 − a(t3 − t2)u2 = I(1− a(t1 − t0))(1− a(t2 − t1))(1− a(t3 − t2)),

and so on until we reach uNt . Very often, tn+1 − tn is constant for all n, so
we can introduce the common symbol ∆t for the time step: ∆t = tn+1 − tn,
n = 0, 1, . . . , Nt − 1. Using a constant time step ∆t in the above calculations
gives

u0 = I,

u1 = I(1− a∆t),
u2 = I(1− a∆t)2,

u3 = I(1− a∆t)3,

...
uNt = I(1− a∆t)Nt .

This means that we have found a closed formula for un, and there is no need
to let a computer generate the sequence u1, u2, u3, However, finding such
a formula for un is possible only for a few very simple problems, so in general
finite difference equations must be solved on a computer.

As the next sections will show, the scheme (7) is just one out of many
alternative finite difference (and other) methods for the model problem (1).

1.3 The Backward Euler scheme
There are several choices of difference approximations in step 3 of the finite
difference method as presented in the previous section. Another alternative is

u′(tn) ≈ un − un−1

tn − tn−1
. (8)

Since this difference is based on going backward in time (tn−1) for information,
it is known as the Backward Euler difference. Figure 4 explains the idea.

Inserting (8) in (4) yields the Backward Euler (BE) scheme:

un − un−1

tn − tn−1
= −aun . (9)

We assume, as explained under step 4 in Section 1.2, that we have computed
u0, u1, . . . , un−1 such that (9) can be used to compute un. For direct similarity

10

backward

u(t)

tntn−1 tn+1

Figure 4: Illustration of a backward difference.

with the Forward Euler scheme (7) we replace n by n+ 1 in (9) and solve for
the unknown value un+1:

un+1 = 1
1 + a(tn+1 − tn)u

n . (10)

1.4 The Crank-Nicolson scheme
The finite difference approximations used to derive the schemes (7) and (10) are
both one-sided differences, known to be less accurate than central (or midpoint)
differences. We shall now construct a central difference at tn+ 1

2
= 1

2 (tn + tn+1),
or tn+ 1

2
= (n+ 1

2)∆t if the mesh spacing is uniform in time. The approximation
reads

u′(tn+ 1
2
) ≈ un+1 − un

tn+1 − tn
. (11)

Note that the fraction on the right-hand side is the same as for the Forward
Euler approximation (5) and the Backward Euler approximation (8) (with n
replaced by n + 1). The accuracy of this fraction as an approximation to the
derivative of u depends on where we seek the derivative: in the center of the
interval [tn, tn+1] or at the end points.

With the formula (11), where u′ is evaluated at tn+ 1
2
, it is natural to demand

the ODE to be fulfilled at the time points between the mesh points:

u′(tn+ 1
2
) = −au(tn+ 1

2
), n = 0, . . . , Nt − 1 . (12)

Using (11) in (12) results in

11

un+1 − un

tn+1 − tn
= −aun+ 1

2 , (13)

where un+ 1
2 is a short form for u(tn+ 1

2
). The problem is that we aim to compute

un for integer n, implying that un+ 1
2 is not a quantity computed by our method.

It must therefore be expressed by the quantities that we actually produce, i.e.,
the numerical solution at the mesh points. One possibility is to approximate
un+ 1

2 as an arithmetic mean of the u values at the neighboring mesh points:

un+ 1
2 ≈ 1

2(un + un+1) . (14)

Using (14) in (13) results in

un+1 − un

tn+1 − tn
= −a1

2(un + un+1) . (15)

Figure 5 sketches the geometric interpretation of such a centered difference.

centered

u(t)

tn+1
2

tn tn+1

Figure 5: Illustration of a centered difference.

We assume that un is already computed so that un+1 is the unknown, which
we can solve for:

un+1 =
1− 1

2a(tn+1 − tn)
1 + 1

2a(tn+1 − tn)
un . (16)

The finite difference scheme (16) is often called the Crank-Nicolson (CN) scheme
or a midpoint or centered scheme.

12

1.5 The unifying θ-rule
The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formu-
lated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) . (17)

Observe:

• θ = 0 gives the Forward Euler scheme

• θ = 1 gives the Backward Euler scheme, and

• θ = 1
2 gives the Crank-Nicolson scheme.

• We may alternatively choose any other value of θ in [0, 1].

As before, un is considered known and un+1 unknown, so we solve for the latter:

un+1 = 1− (1− θ)a(tn+1 − tn)
1 + θa(tn+1 − tn) . (18)

This scheme is known as the θ-rule, or alternatively written as the "theta-rule".

Derivation.

We start with replacing u′ by the fraction

un+1 − un

tn+1 − tn
,

in the Forward Euler, Backward Euler, and Crank-Nicolson schemes. Then
we observe that the difference between the methods concerns which point
this fraction approximates the derivative. Or in other words, at which
point we sample the ODE. So far this has been the end points or the
midpoint of [tn, tn+1]. However, we may choose any point t̃ ∈ [tn, tn+1].
The difficulty is that evaluating the right-hand side −au at an arbitrary
point faces the same problem as in Section 1.4: the point value must be
expressed by the discrete u quantities that we compute by the scheme, i.e.,
un and un+1. Following the averaging idea from Section 1.4, the value of
u at an arbitrary point t̃ can be calculated as a weighted average, which
generalizes the arithmetic mean 1

2u
n+ 1

2u
n+1. If we express t̃ as a weighted

average

tn+θ = θtn+1 + (1− θ)tn,

where θ ∈ [0, 1] is the weighting factor, we can write

u(t̃) = u(θtn+1 + (1− θ)tn) ≈ θun+1 + (1− θ)un . (19)

13

We can now let the ODE hold at the point t̃ ∈ [tn, tn+1], approximate
u′ by the fraction (un+1−un)/(tn+1− tn), and approximate the right-hand
side −au by the weighted average (19). The result is (17).

1.6 Constant time step
All schemes up to now have been formulated for a general non-uniform mesh in
time: t0, t1, . . . , tNt

. Non-uniform meshes are highly relevant since one can use
many points in regions where u varies rapidly, and save points in regions where
u is slowly varying. This is the key idea of adaptive methods where the spacing
of the mesh points are determined as the computations proceed.

However, a uniformly distributed set of mesh points is very common and
sufficient for many applications. It therefore makes sense to present the finite
difference schemes for a uniform point distribution tn = n∆t, where ∆t is the
constant spacing between the mesh points, also referred to as the time step. The
resulting formulas look simpler and are perhaps more well known.

Summary of schemes for constant time step.

un+1 = (1− a∆t)un Forward Euler (20)

un+1 = 1
1 + a∆tu

n Backward Euler (21)

un+1 =
1− 1

2a∆t
1 + 1

2a∆t
un Crank-Nicolson (22)

un+1 = 1− (1− θ)a∆t
1 + θa∆t un The θ − rule (23)

Not surprisingly, we present these three alternative schemes because they
have different pros and cons, both for the simple ODE in question (which can
easily be solved as accurately as desired), and for more advanced differential
equation problems.

Test the understanding.

At this point it can be good training to apply the explained finite difference
discretization techniques to a slightly different equation. Exercise 10 is
therefore highly recommended to check that the key concepts are under-
stood.

14

1.7 Compact operator notation for finite differences
Finite difference formulas can be tedious to write and read, especially for differen-
tial equations with many terms and many derivatives. To save space and help the
reader of the scheme to quickly see the nature of the difference approximations,
we introduce a compact notation. A forward difference approximation is denoted
by the D+

t operator:

[D+
t u]n = un+1 − un

∆t ≈ d

dt
u(tn) . (24)

The notation consists of an operator that approximates differentiation with
respect to an independent variable, here t. The operator is built of the symbol D,
with the variable as subscript and a superscript denoting the type of difference.
The superscript + indicates a forward difference. We place square brackets
around the operator and the function it operates on and specify the mesh point,
where the operator is acting, by a superscript.

The corresponding operator notation for a centered difference and a backward
difference reads

[Dtu]n = un+ 1
2 − un− 1

2

∆t ≈ d

dt
u(tn), (25)

and
[D−t u]n = un − un−1

∆t ≈ d

dt
u(tn) . (26)

Note that the superscript − denotes the backward difference, while no superscript
implies a central difference.

An averaging operator is also convenient to have:

[ut]n = 1
2(un− 1

2 + un+ 1
2) ≈ u(tn) (27)

The superscript t indicates that the average is taken along the time coordinate.
The common average (un + un+1)/2 can now be expressed as [ut]n+ 1

2 . (When
also spatial coordinates enter the problem, we need the explicit specification of
the coordinate after the bar.)

The Backward Euler finite difference approximation to u′ = −au can be
written as follows utilizing the compact notation:

[D−t u]n = −aun .

In difference equations we often place the square brackets around the whole
equation, to indicate at which mesh point the equation applies, since each term
is supposed to be approximated at the same point:

[D−t u = −au]n . (28)

The Forward Euler scheme takes the form

15

[D+
t u = −au]n, (29)

while the Crank-Nicolson scheme is written as

[Dtu = −aut]n+ 1
2 . (30)

Question.

Apply (25) and (27) and write out the expressions to see that (30) is indeed
the Crank-Nicolson scheme.

The θ-rule can be specified by

[D̄tu = −aut,θ]n+θ, (31)

if we define a new time difference

[D̄tu]n+θ = un+1 − un

tn+1 − tn
, (32)

and a weighted averaging operator

[ut,θ]n+θ = (1− θ)un + θun+1 ≈ u(tn+θ), (33)

where θ ∈ [0, 1]. Note that for θ = 1
2 we recover the standard centered difference

and the standard arithmetic mean. The idea in (31) is to sample the equation
at tn+θ, use a skew difference at that point [D̄tu]n+θ, and a skew mean value.
An alternative notation is

[Dtu]n+ 1
2 = θ[−au]n+1 + (1− θ)[−au]n .

Looking at the various examples above and comparing them with the under-
lying differential equations, we see immediately which difference approximations
that have been used and at which point they apply. Therefore, the compact
notation effectively communicates the reasoning behind turning a differential
equation into a difference equation.

2 Implementation

Goal.
We want make a computer program for solving

u′(t) = −au(t), t ∈ (0, T], u(0) = I,

16

by finite difference methods. The program should also display the numerical
solution as a curve on the screen, preferably together with the exact
solution.

All programs referred to in this section are found in the src/decay directory
(we use the classical Unix term directory for what many others nowadays call
folder).

Mathematical problem. We want to explore the Forward Euler scheme, the
Backward Euler, and the Crank-Nicolson schemes applied to our model problem.
From an implementational point of view, it is advantageous to implement the
θ-rule

un+1 = 1− (1− θ)a∆t
1 + θa∆t un,

since it can generate the three other schemes by various of choices of θ: θ = 0 for
Forward Euler, θ = 1 for Backward Euler, and θ = 1/2 for Crank-Nicolson. Given
a, u0 = I, T , and ∆t, our task is to use the θ-rule to compute u1, u2, . . . , uNt ,
where tNt

= Nt∆t, and Nt the closest integer to T/∆t.

Computer Language: Python. Any programming language can be used to
generate the un+1 values from the formula above. However, in this document
we shall mainly make use of Python of several reasons:

• Python has a very clean, readable syntax (often known as "executable
pseudo-code").

• Python code is very similar to MATLAB code (and MATLAB has a
particularly widespread use for scientific computing).

• Python is a full-fledged, very powerful programming language.

• Python is similar to, but much simpler to work with and results in more
reliable code than C++.

• Python has a rich set of modules for scientific computing, and its popularity
in scientific computing is rapidly growing.

• Python was made for being combined with compiled languages (C, C++,
Fortran) to reuse existing numerical software and to reach high computa-
tional performance of new implementations.

• Python has extensive support for administrative task needed when doing
large-scale computational investigations.

• Python has extensive support for graphics (visualization, user interfaces,
web applications).

17

http://tinyurl.com/nm5587k/decay

• FEniCS, a very powerful tool for solving PDEs by the finite element method,
is most human-efficient to operate from Python.

Learning Python is easy. Many newcomers to the language will probably learn
enough from the forthcoming examples to perform their own computer experi-
ments. The examples start with simple Python code and gradually make use of
more powerful constructs as we proceed. As long as it is not inconvenient for
the problem at hand, our Python code is made as close as possible to MATLAB
code for easy transition between the two languages.

Readers who feel the Python examples are too hard to follow will probably
benefit from reading a tutorial, e.g.,

• The Official Python Tutorial

• Python Tutorial on tutorialspoint.com

• Interactive Python tutorial site

• A Beginner’s Python Tutorial

The author also has a comprehensive book [4] that teaches scientific programming
with Python from the ground up.

2.1 Making a solver function
We choose to have an array u for storing the un values, n = 0, 1, . . . , Nt. The
algorithmic steps are

1. initialize u0

2. for t = tn, n = 1, 2, . . . , Nt: compute un using the θ-rule formula

Function for computing the numerical solution. The following Python
function takes the input data of the problem (I, a, T , ∆t, θ) as arguments and
returns two arrays with the solution u0, . . . , uNt and the mesh points t0, . . . , tNt

,
respectively:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

18

http://docs.python.org/2/tutorial/
http://www.tutorialspoint.com/python/
http://www.learnpython.org/
http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial

The numpy library contains a lot of functions for array computing. Most
of the function names are similar to what is found in the alternative scientific
computing language MATLAB. Here we make use of

• zeros(Nt+1) for creating an array of a size Nt+1 and initializing the
elements to zero

• linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uni-
formly distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python. The
construction range(0, Nt, s) generates all integers from 0 to Nt in steps of
s, but not including Nt. Omitting s means s=1. For example, range(0, 6, 3)
gives 0 and 3, while range(0, Nt) generates 0, 1, ..., Nt-1. Our loop implies
the following assignments to u[n+1]: u[1], u[2], ..., u[Nt], which is what we
want since u has length Nt+1. The first index in Python arrays or lists is always
0 and the last is then len(u)-1. The length of an array u is obtained by len(u)
or u.size.

To compute with the solver function, we need to call it. Here is a sample
call:

u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division. The shown implementation of the solvermay face problems
and wrong results if T, a, dt, and theta are given as integers, see Exercises ??
and ??. The problem is related to integer division in Python (as well as in Fortran,
C, C++, and many other computer languages): 1/2 becomes 0, while 1.0/2,
1/2.0, or 1.0/2.0 all become 0.5. It is enough that at least the nominator
or the denominator is a real number (i.e., a float object) to ensure correct
mathematical division. Inserting a conversion dt = float(dt) guarantees that
dt is float and avoids problems in Exercise ??.

Another problem with computing Nt = T/∆t is that we should round Nt to
the nearest integer. With Nt = int(T/dt) the int operation picks the largest
integer smaller than T/dt. Correct mathematical rounding as known from school
is obtained by

Nt = int(round(T/dt))

The complete version of our improved, safer solver function then becomes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values

19

t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Doc strings. Right below the header line in the solver function there is a
Python string enclosed in triple double quotes """. The purpose of this string
object is to document what the function does and what the arguments are. In
this case the necessary documentation do not span more than one line, but with
triple double quoted strings the text may span several lines:

def solver(I, a, T, dt, theta):
"""
Solve

u’(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Such documentation strings appearing right after the header of a function
are called doc strings. There are tools that can automatically produce nicely
formatted documentation by extracting the definition of functions and the
contents of doc strings.

It is strongly recommended to equip any function whose purpose is not
obvious with a doc string. Nevertheless, the forthcoming text deviates from this
rule if the function is explained in the text.

Formatting of numbers. Having computed the discrete solution u, it is
natural to look at the numbers:

Write out a table of t and u values:
for i in range(len(t)):

print t[i], u[i]

This compact print statement gives unfortunately quite ugly output because the
t and u values are not aligned in nicely formatted columns. To fix this problem,
we recommend to use the printf format, supported most programming languages
inherited from C. Another choice is Python’s recent format string syntax.

Writing t[i] and u[i] in two nicely formatted columns is done like this
with the printf format:

20

print ’t=%6.3f u=%g’ % (t[i], u[i])

The percentage signs signify "slots" in the text where the variables listed at the
end of the statement are inserted. For each "slot" one must specify a format for
how the variable is going to appear in the string: s for pure text, d for an integer,
g for a real number written as compactly as possible, 9.3E for scientific notation
with three decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for
standard decimal notation with two decimals formatted with minimum width.
The printf syntax provides a quick way of formatting tabular output of numbers
with full control of the layout.

The alternative format string syntax looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

As seen, this format allows logical names in the "slots" where t[i] and u[i] are
to be inserted. The "slots" are surrounded by curly braces, and the logical name
is followed by a colon and then the printf-like specification of how to format real
numbers, integers, or strings.

Running the program. The function and main program shown above must
be placed in a file, say with name decay_v1.py (v1 for 1st version of this
program). Make sure you write the code with a suitable text editor (Gedit,
Emacs, Vim, Notepad++, or similar). The program is run by executing the file
this way:

Terminal> python decay_v1.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS terminal
window. After this prompt, which will look different in your terminal window,
depending on the terminal application and how it is set up, commands like
python decay_v1.py can be issued. These commands are interpreted by the
operating system.

We strongly recommend to run Python programs within the IPython shell.
First start IPython by typing ipython in the terminal window. Inside the
IPython shell, our program decay_v1.py is run by the command run decay_v1.py:

Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653

21

http://tinyurl.com/nm5587k/decay/decay_v1.py

t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

In [2]:

The advantage of running programs in IPython are many: previous commands
are easily recalled with the up arrow, %pdb turns on debugging so that variables
can be examined if the program aborts due to an exception, output of commands
are stored in variables, programs and statements can be profiled, any operating
system command can be executed, modules can be loaded automatically and
other customizations can be performed when starting IPython – to mention a
few of the most useful features.

Although running programs in IPython is strongly recommended, most
execution examples in the forthcoming text use the standard Python shell with
prompt »> and run programs through a typesetting like

Terminal> python programname

The reason is that such typesetting makes the text more compact in the vertical
direction than showing sessions with IPython syntax.

Plotting the solution. Having the t and u arrays, the approximate solution
u is visualized by the intuitive command plot(t, u):

from matplotlib.pyplot import *
plot(t, u)
show()

It will be illustrative to also plot ue(t) for comparison. We first need to make
a function for computing the analytical solution ue(t) = Ie−at of the model
problem:

def exact_solution(t, I, a):
return I*exp(-a*t)

It is tempting to just do

u_e = exact_solution(t, I, a)
plot(t, u, t, u_e)

However, this is not exactly what we want: the plot function draws straight lines
between the discrete points (t[n], u_e[n]) while ue(t) varies as an exponential
function between the mesh points. The technique for showing the “exact”
variation of ue(t) between the mesh points is to introduce a very fine mesh for
ue(t):

22

t_e = linspace(0, T, 1001) # fine mesh
u_e = exact_solution(t_e, I, a)

We can also plot the curves with different colors and styles, e.g.,

plot(t_e, u_e, ’b-’, # blue line for u_e
t, u, ’r--o’) # red dashes w/circles

With more than one curve in the plot we need to associate each curve
with a legend. We also want appropriate names on the axis, a title, and a file
containing the plot as an image for inclusion in reports. The Matplotlib package
(matplotlib.pyplot) contains functions for this purpose. The names of the
functions are similar to the plotting functions known from MATLAB. A complete
function for creating the comparison plot becomes

from matplotlib.pyplot import *

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)

t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’) # blue line for exact sol.

legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
savefig(’plot_%s_%g.png’ % (theta, dt))

plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

Note that savefig here creates a PNG file whose name reflects the values of θ
and ∆t so that we can easily distinguish files from different runs with θ and ∆t.

The complete code is found in the file decay_v2.py. The resulting plot is
shown in Figure ??. As seen, there is quite some discrepancy between the exact
and the numerical solution. Fortunately, the numerical solution approaches the
exact one as ∆t is reduced.

23

http://tinyurl.com/nm5587k/decay/decay_v2.py

0 1 2 3 4 5 6 7 8
t

0.0

0.2

0.4

0.6

0.8

1.0

u

theta=1, dt=0.8

numerical
exact

2.2 Verifying the implementation
It is easy to make mistakes while deriving and implementing numerical algo-
rithms, so we should never believe in the solution before it has been thoroughly
verified. The most obvious idea to verify the computations is to compare the
numerical solution with the exact solution, when that exists, but there will
always be a discrepancy between these two solutions because of the numerical
approximations. The challenging question is whether we have the mathematically
correct discrepancy or if we have another, maybe small, discrepancy due to both
an approximation error and an error in the implementation. When looking at
Figure ??, it is impossible to judge whether the program is correct or not.

The purpose of verifying a program is to bring evidence for the property
that there are no errors in the implementation. To avoid mixing unavoidable
approximation errors and undesired implementation errors, we should try to
make tests where we have some exact computation of the discrete solution or at
least parts of it. Examples will show how this can be done.

Running a few algorithmic steps by hand. The simplest approach to
produce a correct reference for the discrete solution u of finite difference equations
is to compute a few steps of the algorithm by hand. Then we can compare the
hand calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u1, u2, and
u3. With I = 0.1, θ = 0.8, and ∆t = 0.8 we get

A ≡ 1− (1− θ)a∆t
1 + θa∆t = 0.298245614035

24

u1 = AI = 0.0298245614035,
u2 = Au1 = 0.00889504462912,
u3 = Au2 = 0.00265290804728

Comparison of these manual calculations with the result of the solver
function is carried out in the function

def test_solver_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
u_by_hand = array([I,

0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
diff = abs(u - u_by_hand).max()
success = diff <= tol
assert success

The test_solver_three_steps function follows widely used conventions for
unit testing. By following such conventions we can at a later stage easily execute
a big test suite for our software. The conventions are three-fold:

• The test function starts with test_ and takes no arguments.

• The test ends up in a boolean expression that is True if the test passed
and False if it failed.

• The function runs assert on the boolean expression, resulting in program
abortion (due to an AssertionError exception) if the test failed.

The main program can routinely run the verification test prior to solving the
real problem:

test_solver_three_steps()
plot_numerical_and_exact(I=1, a=2, T=8, dt=0.8, theta=1)
show()

(Rather than calling test_*() functions explicitly, one will normally ask a testing
framework like nose or pytest to find and run such functions.) The complete
program including the verification above is found in the file decay_v3.py.

2.3 Computing the numerical error as a mesh function
Now that we have some evidence for a correct implementation, we are in a
position to compare the computed un values in the u array with the exact u
values at the mesh points, in order to study the error in the numerical solution.

25

http://tinyurl.com/nm5587k/decay/decay_v3.py

A natural way to compare the exact and discrete solutions is to calculate
their difference as a mesh function:

en = ue(tn)− un, n = 0, 1, . . . , Nt . (34)

We may view une = ue(tn) as the representation of ue(t) as a mesh function
rather than a continuous function defined for all t ∈ [0, T] (une is often called the
representative of ue on the mesh). Then, en = une − un is clearly the difference
of two mesh functions. This interpretation of en is natural when programming.

The error mesh function en can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = exact_solution(t, I, a) # Representative of exact sol.
e = u_e - u

Note that the mesh functions u and u_e are represented by arrays and associated
with the points in the array t.

Array arithmetics.

The last statements

u_e = exact_solution(t, I, a)
e = u_e - u

are primary examples of array arithmetics: t is an array of mesh points
that we pass to exact_solution. This function evaluates -a*t, which is
a scalar times an array, meaning that the scalar is multiplied with each
array element. The result is an array, let us call it tmp1. Then exp(tmp1)
means applying the exponential function to each element in tmp, resulting
an array, say tmp2. Finally, I*tmp2 is computed (scalar times array) and
u_e refers to this array returned from exact_solution. The expression
u_e - u is the difference between two arrays, resulting in a new array
referred to by e.

2.4 Computing the norm of the numerical error
Instead of working with the error en on the entire mesh, we often want one
number expressing the size of the error. This is obtained by taking the norm of
the error function.

Let us first define norms of a function f(t) defined for all t ∈ [0, T]. Three
common norms are

26

||f ||L2 =
(∫ T

0
f(t)2dt

)1/2

, (35)

||f ||L1 =
∫ T

0
|f(t)|dt, (36)

||f ||L∞ = max
t∈[0,T]

|f(t)| . (37)

The L2 norm (35) ("L-two norm") has nice mathematical properties and is the
most popular norm. It is a generalization of the well-known Eucledian norm
of vectors to functions. The L∞ is also called the max norm or the supremum
norm. In fact, there is a whole family of norms,

||f ||Lp =
(∫ T

0
f(t)pdt

)1/p

, (38)

with p real. In particular, p = 1 corresponds to the L1 norm above while p =∞
is the L∞ norm.

Numerical computations involving mesh functions need corresponding norms.
Given a set of function values, fn, and some associated mesh points, tn, a
numerical integration rule can be used to calculate the L2 and L1 norms defined
above. Imagining that the mesh function is extended to vary linearly between
the mesh points, the Trapezoidal rule is in fact an exact integration rule. A
possible modification of the L2 norm for a mesh function fn on a uniform mesh
with spacing ∆t is therefore the well-known Trapezoidal integration formula

||fn|| =
(

∆t
(

1
2(f0)2 + 1

2(fNt)2 +
Nt−1∑
n=1

(fn)2

))1/2

A common approximation of this expression, motivated by the convenience of
having a simpler formula, is

||fn||`2 =
(

∆t
Nt∑
n=0

(fn)2

)1/2

.

This is called the discrete L2 norm and denoted by `2. The error in ||f ||2`2

compared with the Trapezoidal integration formula is ∆t((f0)2 + (fNt)2)/2,
which means perturbed weights at the end points of the mesh function, and the
error goes to zero as ∆t→ 0. As long as we are consistent and stick to one kind
of integration rule for the norm of a mesh function, the details and accuracy of
this rule is not of concern.

The three discrete norms for a mesh function fn, corresponding to the L2,
L1, and L∞ norms of f(t) defined above, are defined by

27

||fn||`2

(
∆t

Nt∑
n=0

(fn)2

)1/2

, (39)

||fn||`1∆t
Nt∑
n=0
|fn| (40)

||fn||`∞ max
0≤n≤Nt

|fn| . (41)

Note that the L2, L1, `2, and `1 norms depend on the length of the interval
of interest (think of f = 1, then the norms are proportional to

√
T or T). In

some applications it is convenient to think of a mesh function as just a vector of
function values and neglect the information of the mesh points. Then we can
replace ∆t by T/Nt and drop T . Moreover, it is convenient to divide by the
total length of the vector, Nt + 1, instead of Nt. This reasoning gives rise to the
vector norms for a vector f = (f0, . . . , fN):

||f ||2 =
(

1
N + 1

N∑
n=0

(fn)2

)1/2

, (42)

||f ||1 = 1
N + 1

N∑
n=0
|fn| (43)

||f ||`∞ = max
0≤n≤N

|fn| . (44)

Here we have used the common vector component notation with subscripts (fn)
and N as length. We will mostly work with mesh functions and use the discrete
`2 norm (39) or the max norm `∞ (41), but the corresponding vector norms
(42)-(44) are also much used in numerical computations, so it is important to
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will be taken
as ||en||`2 and called E:

E =

√√√√∆t
Nt∑
n=0

(en)2 (45)

The corresponding Python code, using array arithmetics, reads

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements of
an array. Also the sqrt function is from numpy and computes the square root of
each element in the array argument.

28

Scalar computing. Instead of doing array computing sqrt(dt*sum(e**2))
we can compute with one element at a time:

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = exact_solution(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

Such element-wise computing, often called scalar computing, takes more code,
is less readable, and runs much slower than what we can achieve with array
computing.

2.5 Plotting solutions
2.6 Experiments with computing and plotting
Let us wrap up the computation of the error measure and all the plotting
statements for comparing the exact and numerical solution in a new function
explore. This function can be called for various θ and ∆t values to see how the
error varies with the method and the mesh resolution:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

29

The figure() call is key: without it, a new plot command will draw the
new pair of curves in the same plot window, while we want the different pairs to
appear in separate windows and files. Calling figure() ensures this.

Filenames with the method name (FE, BE, or CN) rather than the θ value
embedded in the name, can easily be created with the aid of a little Python
dictionary for mapping θ to method acronyms:

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

The explore function stores the plot in two different image file formats:
PNG and PDF. The PNG format is aimed at being included in HTML files and
the PDF format in LATEX documents (more precisely, in pdfLATEX documents).
Frequently used viewers for these image files on Unix systems are gv (comes
with Ghostscript) for the PDF format and display (from the ImageMagick)
suite for PNG files:

Terminal> gv BE_0.5.pdf
Terminal> display BE_0.5.png

A main program may run a loop over the three methods (θ values) and call
explore to compute errors and make plots:

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete code containing the functions above resides in the file decay_
plot_mpl.py. Running this program results in

Terminal> python decay_plot_mpl.py
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing ∆t by a factor of 10 increases the accuracy for all
three methods (θ values). We also see that the combination of θ = 0.5 and a
small time step ∆t = 0.04 gives a much more accurate solution, and that θ = 0
and θ = 1 with ∆t = 0.4 result in the least accurate solutions.

Figure 6 demonstrates that the numerical solution for ∆t = 0.4 clearly lies
below the exact curve, but that the accuracy improves considerably by reducing
the time step by a factor of 10.

30

http://tinyurl.com/nm5587k/decay/decay_plot_mpl.py
http://tinyurl.com/nm5587k/decay/decay_plot_mpl.py

Figure 6: The Forward Euler scheme for two values of the time step.

Combining plot files. Mounting two PNG files, as done in the figure, is easily
done by the montage program from the ImageMagick suite:

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png

Terminal> convert -trim FE1.png FE1.png

The -geometry argument is used to specify the size of the image, and here we
preserve the individual sizes of the images. The -tile HxV option specifies H
images in the horizontal direction and V images in the vertical direction. A series
of image files to be combined are then listed, with the name of the resulting
combined image, here FE1.png at the end. The convert -trim command
removes surrounding white areas in the figure (an operation usually known as
cropping in image manipulation programs).

For LATEX reports it is not recommended to use montage and PNG files as the
result has too low resolution. Instead, plots should be made in the PDF format
and combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/Unix):

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 --outfile tmp.pdf tmp.pdf
Terminal> pdfcrop tmp.pdf FE1.png # output in FE1.png

Here, pdftk combines images into a multi-page PDF file, pdfnup combines the
images in individual pages to a table of images (pages), and pdfcrop removes
white margins in the resulting combined image file.

The behavior of the two other schemes is shown in Figures 7 and 8. Crank-
Nicolson is obviously the most accurate scheme from this visual point of view.

31

http://www.imagemagick.org/script/montage.php

Figure 7: The Backward Euler scheme for two values of the time step.

Figure 8: The Crank-Nicolson scheme for two values of the time step.

Plotting with SciTools. The SciTools package provides a unified plotting
interface, called Easyviz, to many different plotting packages, including Mat-
plotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The syntax is
very similar to that of Matplotlib and MATLAB. In fact, the plotting commands
shown above look the same in SciTool’s Easyviz interface, apart from the import
statement, which reads

from scitools.std import *

This statement performs a from numpy import * as well as an import of the
most common pieces of the Easyviz (scitools.easyviz) package, along with
some additional numerical functionality.

With Easyviz one can merge several plotting commands into a single one
using keyword arguments:

32

http://code.google.com/p/scitools

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],
xlabel=’t’,
ylabel=’u’,
title=’theta=%g, dt=%g’ % (theta, dt),
savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot and Grace

are viable alternatives:

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The backend used for creating plots (and numerous other options) can be
permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one before
the next one pops up (as is the case with Matplotlib) and one can press the key
’q’ anywhere in a plot window to kill it. Another advantage of Gnuplot is the
automatic choice of sensible and distinguishable line types in black-and-white
PDF and PostScript files.

Regarding functionality for annotating plots with title, labels on the axis,
legends, etc., we refer to the documentation of Matplotlib and SciTools for more
detailed information on the syntax. The hope is that the programming syntax
explained so far suffices for understanding the code and learning more from a
combination of the forthcoming examples and other resources such as books and
web pages.

Test the understanding.

Exercise 11 asks you to implement a solver for a problem that is slightly
different from the one above. You may use the solver and explore
functions explained above as a starting point. Apply the new solver to
Exercise 12.

2.7 Memory-saving implementation
The computer memory requirements of our implementations so far consists
mainly of the u and t arrays, both of length Nt + 1, plus some other temporary
arrays that Python needs for intermediate results if we do array arithmetics in
our program (e.g., I*exp(-a*t) needs to store a*t before - can be applied to it
and then exp). Regardless of how we implement simple ODE problems, storage
requirements are very modest and put not restriction on how we choose our data

33

http://tinyurl.com/nm5587k/decay/decay_plot_st.py
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/

structures and algorithms. Nevertheless, when the methods for ODEs used here
are applied to three-dimensional partial differential equation (PDE) problems,
memory storage requirements suddenly become a challenging issue.

The PDE counterpart to our model problem u′ = −a is a diffusion equation
ut = a∇2u posed on a space-time domain. The discrete representation of this
domain may in 3D be a spatial mesh of M3 points and a time mesh of Nt
points. A typical desired value for M is 100 in many applications, or even 1000.
Storing all the computed u values, like we have done in the programs so far,
demands storage of some arrays of size M3Nt, giving a factor of M3 larger
storage demands compared to our ODE programs. Each real number in the
array for u requires 8 bytes (b) of storage. With M = 100 and Nt = 1000,
there is a storage demand of (103)3 · 1000 · 8 = 8 Gb for the solution array.
Fortunately, we can usually get rid of the Nt factor, resulting in 8 Mb of storage.
Below we explain how this is done, and the technique is almost always applied
in implementations of PDE problems.

Let us critically evaluate how much we really need to store in the computer’s
memory in our implementation of the θ method. To compute a new un+1, all we
need is un. This implies that the previous un−1, un−2, . . . , u0 values do not need
to be stored in an array, although this is convenient for plotting and data analysis
in the program. Instead of the u array we can work with two variables for real
numbers, u and u_1, representing un+1 and un in the algorithm, respectively.
At each time level, we update u from u_1 and then set u_1 = u so that the
computed un+1 value becomes the "previous" value un at the next time level.
The downside is that we cannot plot the solution after the simulation is done
since only the last two numbers are available. The remedy is to store computed
values in a file and use the file for visualizing the solution later.

We have implemented this memory saving idea in the file decay_memsave.py,
which is a slight modification of decay_plot_mpl.py program.

The following function demonstrates how we work with the two most recent
values of the unknown:

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write(’%.16E %.16E\n’ % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write(’%.16E %.16E\n’ % (t, u))

34

http://tinyurl.com/nm5587k/decay/decay_memsave.py
http://tinyurl.com/nm5587k/decay/decay_plot_mpl.py

outfile.close()
return u, t

This code snippet serves as a quick introduction to file writing in Python. Reading
the data in the file into arrays t and u are done by the function

def read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common, and numpy
has a function loadtxt which loads such tabular data into a two-dimensional
array, say with name data. The number in row i and column j is then data[i,j].
The whole column number j can be extracted by data[:,j]. A version of
read_file using np.loadtxt reads

def read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

The present counterpart to the explore function from decay_plot_mpl.py
must run solver_memsave and then load data from file before we can compute
the error measure and make the plot:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = exact_solution(t, I, a)
e = u_e - u
E = sqrt(dt*np.sum(e**2))
if makeplot:

figure()
...

Apart from the internal implementation, where un values are stored in
a file rather than in an array, decay_memsave.py file works exactly as the
decay_plot_mpl.py file.

3 Analysis of finite difference equations
We address the ODE for exponential decay,

u′(t) = −au(t), u(0) = I, (46)

35

http://tinyurl.com/nm5587k/decay/decay_plot_mpl.py

where a and I are given constants. This problem is solved by the θ-rule finite
difference scheme, resulting in the recursive equations

un+1 = 1− (1− θ)a∆t
1 + θa∆t un (47)

for the numerical solution un+1, which approximates the exact solution ue at time
point tn+1. For constant mesh spacing, which we assume here, tn+1 = (n+ 1)∆t.

Discouraging numerical solutions. Choosing I = 1, a = 2, and running
experiments with θ = 1, 0.5, 0 for ∆t = 1.25, 0.75, 0.5, 0.1, gives the results in
Figures 9, 10, and 11.

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.1

numerical
exact

Figure 9: Backward Euler.

The characteristics of the displayed curves can be summarized as follows:

• The Backward Euler scheme always gives a monotone solution, lying above
the exact curve.

• The Crank-Nicolson scheme gives the most accurate results, but for ∆t =
1.25 the solution oscillates.

36

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

Figure 10: Crank-Nicolson.

• The Forward Euler scheme gives a growing, oscillating solution for ∆t =
1.25; a decaying, oscillating solution for ∆t = 0.75; a strange solution
un = 0 for n ≥ 1 when ∆t = 0.5; and a solution seemingly as accurate as
the one by the Backward Euler scheme for ∆t = 0.1, but the curve lies
below the exact solution.

Since the exact solution of our model problem is a monotone function, u(t) =
Ie−at, some of these qualitatively wrong results are indeed alarming!

Goal.
We ask the question

• Under what circumstances, i.e., values of the input data I, a, and
∆t will the Forward Euler and Crank-Nicolson schemes result in
undesired oscillatory solutions?

37

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

Figure 11: Forward Euler.

The question will be investigated both by numerical experiments and by
precise mathematical theory. The latter will help establish general criteria
on ∆t for avoiding non-physical oscillatory or growing solutions.

Another question to be raised is

• How does ∆t impact the error in the numerical solution?

For our simple model problem we can answer this question very precisely,
but we will also look at simplified formulas for small ∆t and touch upon
important concepts such as convergence rate and the order of a scheme.
Other fundamental concepts mentioned are stability, consistency, and
convergence.

3.1 Experimental investigation of oscillatory solutions
To address the first question above, we may set up an experiment where we
loop over values of I, a, and ∆t. For each experiment, we flag the solution as
oscillatory if

un > un−1,

38

for some value of n, since we expect un to decay with n, but oscillations make u
increase over a time step. We will quickly see that oscillations are independent
of I, but do depend on a and ∆t. Therefore, we introduce a two-dimensional
function B(a,∆t) which is 1 if oscillations occur and 0 otherwise. We can
visualize B as a contour plot (lines for which B = const). The contour B = 0.5
corresponds to the borderline between oscillatory regions with B = 1 and
monotone regions with B = 0 in the a,∆t plane.

The B function is defined at discrete a and ∆t values. Say we have given P a
values, a0, . . . , aP−1, and Q ∆t values, ∆t0, . . . ,∆tQ−1. These ai and ∆tj values,
i = 0, . . . , P −1, j = 0, . . . , Q−1, form a rectangular mesh of P ×Q points in the
plane. At each point (ai,∆tj), we associate the corresponding value of B(ai,∆tj),
denoted Bij . The Bij values are naturally stored in a two-dimensional array. We
can thereafter create a plot of the contour line Bij = 0.5 dividing the oscillatory
and monotone regions. The file decay_osc_regions.py osc_regions stands
for "oscillatory regions") contains all nuts and bolts to produce the B = 0.5 line
in Figures 12 and 13. The oscillatory region is above this line.

from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
"""
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
"""
a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):

for j in range(len(dt)):
u, t = solver(I, a[i], T, dt[j], theta)
Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1, len(u)):

if u[n] > u[n-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop

B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=%g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_%s.png’ % theta)
st.savefig(’osc_region_theta_%s.pdf’ % theta)

non_physical_behavior(
I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

39

http://tinyurl.com/nm5587k/decay/decay_osc_regions.py

Figure 12: Forward Euler scheme: oscillatory solutions occur for points above
the curve.

By looking at the curves in the figures one may guess that a∆t must be less
than a critical limit to avoid the undesired oscillations. This limit seems to be
about 2 for Crank-Nicolson and 1 for Forward Euler. We shall now establish
a precise mathematical analysis of the discrete model that can explain the
observations in our numerical experiments.

3.2 Exact numerical solution
Starting with u0 = I, the simple recursion (47) can be applied repeatedly n
times, with the result that

un = IAn, A = 1− (1− θ)a∆t
1 + θa∆t . (48)

Solving difference equations.

Difference equations where all terms are linear in un+1, un, and maybe
un−1, un−2, etc., are called homogeneous, linear difference equations, and
their solutions are generally of the form un = An. Inserting this expression
and dividing by An+1 gives a polynomial equation in A. In the present

40

Figure 13: Crank-Nicolson scheme: oscillatory solutions occur for points above
the curve.

case we get
A = 1− (1− θ)a∆t

1 + θa∆t .

This is a solution technique of wider applicability than repeated use of the
recursion (47).

Regardless of the solution approach, we have obtained a formula for un. This
formula can explain everything what we see in the figures above, but it also
gives us a more general insight into accuracy and stability properties of the three
schemes.

3.3 Stability
Since un is a factor A raised to an integer power n, we realize that A < 0 will
for odd powers imply un < 0 and for even power result in un > 0. That is, the
solution oscillates between the mesh points. We have oscillations due to A < 0
when

(1− θ)a∆t > 1 . (49)

41

Since A > 0 is a requirement for having a numerical solution with the same
basic property (monotonicity) as the exact solution, we may say that A > 0 is a
stability criterion. Expressed in terms of ∆t the stability criterion reads

∆t < 1
(1− θ)a . (50)

The Backward Euler scheme is always stable since A < 0 is impossible for
θ = 1, while non-oscillating solutions for Forward Euler and Crank-Nicolson
demand ∆t ≤ 1/a and ∆t ≤ 2/a, respectively. The relation between ∆t and a
look reasonable: a larger a means faster decay and hence a need for smaller time
steps.

Looking at Figure 11, we see that with a∆t = 2 · 1.25 = 2.5, A = −1.5, and
the solution un = (−1.5)n oscillates and grows. With a∆t = 2 · 0.75 = 1.5,
A = −0.5, un = (−0.5)n decays but oscillates. The peculiar case ∆t = 0.5,
where the Forward Euler scheme produces a solution that is stuck on the t axis,
corresponds to A = 0 and therefore u0 = I = 1 and un = 0 for n ≥ 1. The
decaying oscillations in the Crank-Nicolson scheme for ∆t = 1.25 are easily
explained by the fact that A ≈ −0.11 < 0.

The factor A is called the amplification factor since the solution at a new time
level is A times the solution at the previous time level. For a decay process, we
must obviously have |A| ≤ 1, which is fulfilled for all ∆t if θ ≥ 1/2. Arbitrarily
large values of u can be generated when |A| > 1 and n is large enough. The
numerical solution is in such cases totally irrelevant to an ODE modeling decay
processes! To avoid this situation, we must for θ < 1/2 have

∆t ≤ 2
(1− 2θ)a, (51)

which means ∆t < 2/a for the Forward Euler scheme.

Stability properties.

We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme because
it requires ∆t < 2/a for avoiding growing solutions and ∆t < 1/a for
avoiding oscillatory solutions.

2. The Crank-Nicolson is unconditionally stable with respect to growing
solutions, while it is conditionally stable with the criterion ∆t < 2/a
for avoiding oscillatory solutions.

3. The Backward Euler method is unconditionally stable with respect
to growing and oscillatory solutions - any ∆t will work.

42

Much literature on ODEs speaks about L-stable and A-stable methods. In
our case A-stable methods ensures non-growing solutions, while L-stable
methods also avoids oscillatory solutions.

3.4 Comparing amplification factors
After establishing how A impacts the qualitative features of the solution, we shall
now look more into how well the numerical amplification factor approximates
the exact one. The exact solution reads u(t) = Ie−at, which can be rewritten as

ue(tn) = Ie−an∆t = I(e−a∆t)n . (52)

From this formula we see that the exact amplification factor is

Ae = e−a∆t . (53)

We realize that the exact and numerical amplification factors depend on a and
∆t through the product a∆t. Therefore, it is convenient to introduce a symbol
for this product, p = a∆t, and view A and Ae as functions of p. Figure 14 shows
these functions. Crank-Nicolson is clearly closest to the exact amplification
factor, but that method has the unfortunate oscillatory behavior when p > 2.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3

A

a*dt

Amplification factors

exact
FE
BE
CN

Figure 14: Comparison of amplification factors.

43

3.5 Series expansion of amplification factors
As an alternative to the visual understanding inherent in Figure 14, there is a
strong tradition in numerical analysis to establish formulas for the approximation
errors when the discretization parameter, here ∆t, becomes small. In the present
case we let p be our small discretization parameter, and it makes sense to simplify
the expressions for A and Ae by using Taylor polynomials around p = 0. The
Taylor polynomials are accurate for small p and greatly simplifies the comparison
of the analytical expressions since we then can compare polynomials, term by
term.

Calculating the Taylor series for Ae is easily done by hand, but the three
versions of A for θ = 0, 1, 1

2 lead to more cumbersome calculations. Nowadays,
analytical computations can benefit greatly by symbolic computer algebra soft-
ware. The Python package sympy represents a powerful computer algebra system,
not yet as sophisticated as the famous Maple and Mathematica systems, but
free and very easy to integrate with our numerical computations in Python.

When using sympy, it is convenient to enter the interactive Python mode
where we can write expressions and statements and immediately see the results.
Here is a simple example. We strongly recommend to use isympy (or ipython)
for such interactive sessions.

Let us illustrate sympy with a standard Python shell syntax (»> prompt) to
compute a Taylor polynomial approximation to e−p:

>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’
>>> p = Symbol(’p’)
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

Lines with »> represent input lines and lines without this prompt represents
the result of computations (note that isympy and ipython apply other prompts,
but in this text we always apply »> for interactive Python computing). Apart
from the order of the powers, the computed formula is easily recognized as the
beginning of the Taylor series for e−p.

Let us define the numerical amplification factor where p and θ enter the
formula as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substitute the
value 1 for theta:

44

>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can replace theta by 1/2 for Crank-Nicolson, preferably using an
exact rational representation of 1/2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2*p)

The Taylor series of the amplification factor for the Crank-Nicolson scheme
can be computed as

>>> A.subs(theta, half).series(p, 0, 4)
1 + (1/2)*p**2 - p - 1/4*p**3 + O(p**4)

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

From these expressions we see that the error A−Ae ∼ O(p2) for the Forward
and Backward Euler schemes, while A − Ae ∼ O(p3) for the Crank-Nicolson
scheme. It is the leading order term, i.e., the term of the lowest order (polynomial
degree), that is of interest, because as p→ 0, this term is (much) bigger than
the higher-order terms (think of p = 0.01: p is a hundred times larger than p2).

Now, a is a given parameter in the problem, while ∆t is what we can vary.
One therefore usually writes the error expressions in terms ∆t. When then have

A−Ae =
{
O(∆t2), Forward and Backward Euler,
O(∆t3), Crank-Nicolson (54)

We say that the Crank-Nicolson scheme has an error in the amplification
factor of order ∆t3, while the two other schemes are of order ∆t2 in the same
quantity. What is the significance of the order expression? If we halve ∆t,
the error in amplification factor at a time level will be reduced by a factor of
4 in the Forward and Backward Euler schemes, and by a factor of 8 in the
Crank-Nicolson scheme. That is, as we reduce ∆t to obtain more accurate
results, the Crank-Nicolson scheme reduces the error more efficiently than the
other schemes.

45

3.6 The fraction of numerical and exact amplification fac-
tors

An alternative comparison of the schemes is to look at the ratio A/Ae, or the
error 1−A/Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

The leading-order terms have the same powers as in the analysis of A−Ae.

3.7 The global error at a point
The error in the amplification factor reflects the error when progressing from
time level tn to tn−1. To investigate the real error at a point, known as the
global error, we look at en = un − ue(tn) for some n and Taylor expand the
mathematical expressions as functions of p = a∆t:

>>> n = Symbol(’n’)
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

For a fixed time t, the parameter n in these expressions increases as p→ 0 since
t = n∆t = const and hence n must increase like ∆t−1. With n substituted
by t/∆t in the leading-order error terms, these become 1

2na
2∆t2 = 1

2 ta
2∆t for

the Forward and Backward Euler scheme, and 1
12na

3∆t3 = 1
12 ta

3∆t2 for the
Crank-Nicolson scheme. The global error is therefore of second order (in ∆t) for
the latter scheme and of first order for the former schemes.

When the global error en → 0 as ∆t→ 0, we say that the scheme is convergent.
It means that the numerical solution approaches the exact solution as the mesh
is refined, and this is a much desired property of a numerical method.

3.8 Integrated errors
It is common to study the norm of the numerical error, as explained in detail in
Section 2.4. The L2 norm can be computed by treating en as a function of t in

46

sympy and performing symbolic integration. For the Forward Euler scheme we
have

p, n, a, dt, t, T, theta = symbols(’p n a dt t T ’theta’)
A = (1-(1-theta)*p)/(1+theta*p)
u_e = exp(-p*n)
u_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
Introduce t and dt instead of n and p
error = error.subs(’n’, ’t/dt’).subs(p, ’a*dt’)
error = error.as_leading_term(dt) # study only the first term
print error
error_L2 = sqrt(integrate(error**2, (t, 0, T)))
print error_L2

The output reads

sqrt(30)*sqrt(T**3*a**4*dt**2*(6*T**2*a**2 - 15*T*a + 10))/60

which means that the L2 error behaves like a2∆t.
Strictly speaking, the numerical error is only defined at the mesh points so it

makes most sense to compute the `2 error

||en||`2 =

√√√√∆t
Nt∑
n=0

(ue(tn)− un)2 .

We have obtained an exact analytical expressions for the error at t = tn, but
here we use the leading-order error term only since we are mostly interested in
how the error behaves as a polynomial in ∆t, and then the leading order term
will dominate. For the Forward Euler scheme, ue(tn)− un ≈ 1

2np
2, and we have

||en||2`2 = ∆t
Nt∑
n=0

1
4n

2p4 = ∆t14p
4
Nt∑
n=0

n2 .

Now,
∑Nt

n=0 n
2 ≈ 1

3N
3
t . Using this approximation, setting Nt = T/∆t, and

taking the square root gives the expression

||en||`2 = 1
2

√
T 3

3 a2∆t .

Calculations for the Backward Euler scheme are very similar and provide the
same result, while the Crank-Nicolson scheme leads to

||en||`2 = 1
12

√
T 3

3 a3∆t2 .

Summary of errors.

47

Both the point-wise and the time-integrated true errors are of second order
in ∆t for the Crank-Nicolson scheme and of first order in ∆t for the Forward
Euler and Backward Euler schemes.

3.9 Truncation error
The truncation error is a very frequently used error measure for finite difference
methods. It is defined as the error in the difference equation that arises when
inserting the exact solution. Contrary to many other error measures, e.g., the
true error en = ue(tn) − un, the truncation error is a quantity that is easily
computable.

Let us illustrate the calculation of the truncation error for the Forward Euler
scheme. We start with the difference equation on operator form,

[Dtu = −au]n,

i.e.,

un+1 − un

∆t = −aun .

The idea is to see how well the exact solution ue(t) fulfills this equation. Since
ue(t) in general will not obey the discrete equation, error in the discrete equation,
called a residual, denoted here by Rn:

Rn = ue(tn+1)− ue(tn)
∆t + aue(tn) . (55)

The residual is defined at each mesh point and is therefore a mesh function with
a superscript n.

The interesting feature of Rn is to see how it depends on the discretization
parameter ∆t. The tool for reaching this goal is to Taylor expand ue around the
point where the difference equation is supposed to hold, here t = tn. We have
that

ue(tn+1) = ue(tn) + u′e(tn)∆t+ 1
2u
′′
e (tn)∆t2 + · · ·

Inserting this Taylor series in (55) gives

Rn = u′e(tn) + 1
2u
′′
e (tn)∆t+ . . .+ aue(tn) .

Now, ue fulfills the ODE u′e = −aue such that the first and last term cancels
and we have

Rn ≈ 1
2u
′′
e (tn)∆t .

48

This Rn is the truncation error, which for the Forward Euler is seen to be of
first order in ∆t.

The above procedure can be repeated for the Backward Euler and the Crank-
Nicolson schemes. We start with the scheme in operator notation, write it out in
detail, Taylor expand ue around the point t̃ at which the difference equation is
defined, collect terms that correspond to the ODE (here u′e + aue), and identify
the remaining terms as the residual R, which is the truncation error. The
Backward Euler scheme leads to

Rn ≈ −1
2u
′′
e (tn)∆t,

while the Crank-Nicolson scheme gives

Rn+ 1
2 ≈ 1

24u
′′′
e (tn+ 1

2
)∆t2 .

The order r of a finite difference scheme is often defined through the leading
term ∆tr in the truncation error. The above expressions point out that the
Forward and Backward Euler schemes are of first order, while Crank-Nicolson
is of second order. We have looked at other error measures in other sections,
like the error in amplification factor and the error en = ue(tn) − un, and
expressed these error measures in terms of ∆t to see the order of the method.
Normally, calculating the truncation error is more straightforward than deriving
the expressions for other error measures and therefore the easiest way to establish
the order of a scheme.

3.10 Consistency, stability, and convergence
Three fundamental concepts when solving differential equations by numerical
methods are consistency, stability, and convergence. We shall briefly touch these
concepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through
the truncation error, goes to zero as ∆t → 0. Since the truncation error
tells how well the exact solution fulfills the difference equation, and the exact
solution fulfills the differential equation, consistency ensures that the difference
equation approaches the differential equation in the limit. The expressions for the
truncation errors in the previous section are all proportional to ∆t or ∆t2, hence
they vanish as ∆t→ 0, and all the schemes are consistent. Lack of consistency
implies that we actually solve a different differential equation in the limit ∆t→ 0
than we aim at.

Stability means that the numerical solution exhibits the same qualitative
properties as the exact solution. This is obviously a feature we want the numerical
solution to have. In the present exponential decay model, the exact solution is
monotone and decaying. An increasing numerical solution is not in accordance
with the decaying nature of the exact solution and hence unstable. We can also
say that an oscillating numerical solution lacks the property of monotonicity
of the exact solution and is also unstable. We have seen that the Backward

49

Euler scheme always leads to monotone and decaying solutions, regardless of ∆t,
and is hence stable. The Forward Euler scheme can lead to increasing solutions
and oscillating solutions if ∆t is too large and is therefore unstable unless ∆t is
sufficiently small. The Crank-Nicolson can never lead to increasing solutions and
has no problem to fulfill that stability property, but it can produce oscillating
solutions and is unstable in that sense, unless ∆t is sufficiently small.

Convergence implies that the global (true) error mesh function en = ue(tn)−
un → 0 as ∆t→ 0. This is really what we want: the numerical solution gets as
close to the exact solution as we request by having a sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple problems
like the present one. Stability and consistency are much easier to calculate. A
major breakthrough in the understanding of numerical methods for differential
equations came in 1956 when Lax and Richtmeyer established equivalence
between convergence on one hand and consistency and stability on the other (the
Lax equivalence theorem). In practice it meant that one can first establish that a
method is stable and consistent, and then it is automatically convergent (which
is much harder to establish). The result holds for linear problems only, and in
the world of nonlinear differential equations the relations between consistency,
stability, and convergence are much more complicated.

We have seen in the previous analysis that the Forward Euler, Backward
Euler, and Crank-Nicolson schemes are convergent (en → 0), that they are
consistent (Rn → 0, and that they are stable under certain conditions on the
size of ∆t. We have also derived explicit mathematical expressions for en, the
truncation error, and the stability criteria.

4 Exercises
Exercise 1: Visualize the accuracy of finite differences
The purpose of this exercise is to visualize the accuracy of finite difference
approximations of the derivative of a given function. For any finite difference
approximation, take the Forward Euler difference as an example, and any specific
function, take u = e−at, we may introduce an error fraction

E = [D+
t u]n

u′(tn) = exp (−a(tn + ∆t))− exp (−atn)
−a exp (−atn)∆t = 1

a∆t (1− exp (−a∆t)) ,

and view E as a function of ∆t. We expect that lim∆t→0E = 1, while E may
deviate significantly from unity for large ∆t. How the error depends on ∆t
is best visualized in a graph where we use a logarithmic scale for ∆t, so we
can cover many orders of magnitude of that quantity. Here is a code segment
creating an array of 100 intervals, on the logarithmic scale, ranging from 10−6 to
10−0.5 and then plotting E versus p = a∆t with logarithmic scale on the p axis:

50

http://en.wikipedia.org/wiki/Lax_equivalence_theorem

from numpy import logspace, exp
from matplotlib.pyplot import plot, semilogx
p = logspace(-6, -0.5, 101)
y = (1-exp(-p))/p
semilogx(p, y)

Illustrate such errors for the finite difference operators [D+
t u]n (forward), [D−t u]n

(backward), and [Dtu]n (centered) in the same plot.
Perform a Taylor series expansions of the error fractions and find the leading

order r in the expressions of type 1 +Cpr +O(pr+1), where C is some constant.

Hint. To save manual calculations and learn more about symbolic computing,
make functions for the three difference operators and use sympy to perform
the symbolic differences, differentiation, and Taylor series expansion. To plot a
symbolic expression E against p, convert the expression to a Python function
first: E = sympy.lamdify([p], E).
Filename: decay_plot_fd_error.py.

Exercise 2: Explore the θ-rule for exponential growth
This exercise asks you to solve the ODE u′ = −au with a < 0 such that the
ODE models exponential growth instead of exponential decay. A central theme
is to investigate numerical artifacts and non-physical solution behavior.

a) Set a = −1 and run experiments with θ = 0, 0.5, 1 for various values of ∆t
to uncover numerical artifacts. Recall that the exact solution is a monotone,
growing function when a < 0. Oscillations or significantly wrong growth are
signs of wrong qualitative behavior.

From the experiments, select four values of ∆t that demonstrate the kind of nu-
merical solutions that are characteristic for this model. Filename: growth_demo.py.

b) Write up the amplification factor and plot it for θ = 0, 0.5, 1 together with
the exact one for a∆t < 0. Use the plot to explain the observations made in the
experiments.

Hint. Modify the decay_ampf_plot.py code.
Filename: growth_ampf_plot.py.

5 Model extensions
It is time to consider generalizations of the simple decay model u = −au and
also to look at additional numerical solution methods.

51

http://tinyurl.com/nm5587k/decay/decay_ampf_plot.py

5.1 Generalization: including a variable coefficient
In the ODE for decay, u′ = −au, we now consider the case where a depends on
time:

u′(t) = −a(t)u(t), t ∈ (0, T], u(0) = I . (56)

A Forward Euler scheme consist of evaluating (56) at t = tn and approximat-
ing the derivative with a forward difference [D+

t u]n:

un+1 − un

∆t = −a(tn)un . (57)

The Backward Euler scheme becomes

un − un−1

∆t = −a(tn)un . (58)

The Crank-Nicolson method builds on sampling the ODE at tn+ 1
2
. We can

evaluate a at tn+ 1
2
and use an average for u at times tn and tn+1:

un+1 − un

∆t = −a(tn+ 1
2
)1
2(un + un+1) . (59)

Alternatively, we can use an average for the product au:

un+1 − un

∆t = −1
2(a(tn)un + a(tn+1)un+1) . (60)

The θ-rule unifies the three mentioned schemes. One version is to have a
evaluated at tn+θ,

un+1 − un

∆t = −a((1− θ)tn + θtn+1)((1− θ)un + θun+1) . (61)

Another possibility is to apply a weighted average for the product au,

un+1 − un

∆t = −(1− θ)a(tn)un − θa(tn+1)un+1 . (62)

With the finite difference operator notation the Forward Euler and Backward
Euler schemes can be summarized as

[D+
t u = −au]n, (63)

[D−t u = −au]n . (64)

The Crank-Nicolson and θ schemes depend on whether we evaluate a at the
sample point for the ODE or if we use an average. The various versions are
written as

52

[Dtu = −aut]n+ 1
2 , (65)

[Dtu = −aut]n+ 1
2 , (66)

[Dtu = −aut,θ]n+θ, (67)
[Dtu = −aut,θ]n+θ . (68)

5.2 Generalization: including a source term
A further extension of the model ODE is to include a source term b(t):

u′(t) = −a(t)u(t) + b(t), t ∈ (0, T], u(0) = I . (69)

Schemes. The time point where we sample the ODE determines where b(t) is
evaluated. For the Crank-Nicolson scheme and the θ-rule we have a choice of
whether to evaluate a(t) and b(t) at the correct point or use an average. The
chosen strategy becomes particularly clear if we write up the schemes in the
operator notation:

[D+
t u = −au+ b]n, (70)

[D−t u = −au+ b]n, (71)

[Dtu = −aut + b]n+ 1
2 , (72)

[Dtu = −au+ b
t]n+ 1

2 , (73)
[Dtu = −aut,θ + b]n+θ, (74)

[Dtu = −au+ b
t,θ]n+θ . (75)

5.3 Implementation of the generalized model problem
Deriving the θ-rule formula. Writing out the θ-rule in (75), using (32) and
(33), we get

un+1 − un

∆t = θ(−an+1un+1 + bn+1)) + (1− θ)(−anun + bn)), (76)

where an means evaluating a at t = tn and similar for an+1, bn, and bn+1. We
solve for un+1:

un+1 = ((1−∆t(1− θ)an)un + ∆t(θbn+1 + (1− θ)bn))(1 + ∆tθan+1)−1 . (77)

The Python code. Here is a suitable implementation of (76) where a(t) and
b(t) are given as Python functions:

53

def solver(I, a, b, T, dt, theta):
"""
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

This function is found in the file decay_vc.py (vc stands for "variable coeffi-
cients").

Coding of variable coefficients. The solver function shown above demands
the arguments a and b to be Python functions of time t, say

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Here, a(t) has three parameters a0, tp, and k, which must be global variables.
A better implementation is to represent a by a class where the parameters are
attributes and a special method __call__ evaluates a(t):

class A:
def __init__(self, a0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a class. The
lambda function construction in Python is then convenient. For example,

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t): definition above. In general,

f = lambda arg1, arg2, ...: expressin

is equivalent to

54

http://tinyurl.com/nm5587k/decay/decay_vc.py

def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve u′ = −u+1,
u(0) = 2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

A lambda function can appear anywhere where a variable can appear.

5.4 Verifying a constant solution
A very useful partial verification method is to construct a test problem with
a very simple solution, usually u = const. Especially the initial debugging of
a program code can benefit greatly from such tests, because 1) all relevant
numerical methods will exactly reproduce a constant solution, 2) many of the
intermediate calculations are easy to control for a constant u, and 3) even a
constant u can uncover many bugs in an implementation.

The only constant solution for the problem u′ = −au is u = 0, but too many
bugs can escape from that trivial solution. It is much better to search for a
problem where u = C = const 6= 0. Then u′ = −a(t)u+ b(t) is more appropriate:
with u = C we can choose any a(t) and set b = a(t)C and I = C. An appropriate
test function is

def test_constant_solution():
"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
tol = 1E-14
assert difference < tol

An interesting question is what type of bugs that will make the computed un
deviate from the exact solution C. Fortunately, the updating formula and the
initial condition must be absolutely correct for the test to pass! Any attempt to
make a wrong indexing in terms like a(t[n]) or any attempt to introduce an
erroneous factor in the formula creates a solution that is different from C.

55

5.5 Verification via manufactured solutions
Following the idea of the previous section, we can choose any formula as the
exact solution, insert the formula in the ODE problem and fit the data a(t), b(t),
and I to make the chosen formula fulfill the equation. This powerful technique
for generating exact solutions is very useful for verification purposes and known
as the method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent
variable(s). The rationale behind such a simple variation is that almost any
relevant numerical solution method for differential equation problems is able to
reproduce the linear function exactly to machine precision (if u is about unity
in size; precision is lost if u take on large values, see Exercise 3). The linear
solution also makes some stronger demands to the numerical method and the
implementation than the constant solution used in Section 5.4, at least in more
complicated applications. However, the constant solution is often ideal for initial
debugging before proceeding with a linear solution.

We choose a linear solution u(t) = ct+d. From the initial condition it follows
that d = I. Inserting this u in the ODE results in

c = −a(t)u+ b(t) .

Any function u = ct+ I is then a correct solution if we choose

b(t) = c+ a(t)(ct+ I) .

With this b(t) there are no restrictions on a(t) and c.
Let prove that such a linear solution obeys the numerical schemes. To this

end, we must check that un = ca(tn)(ctn + I) fulfills the discrete equations. For
these calculations, and later calculations involving linear solutions inserted in
finite difference schemes, it is convenient to compute the action of a difference
operator on a linear function t:

[D+
t t]n = tn+1 − tn

∆t = 1, (78)

[D−t t]n = tn − tn−1

∆t = 1, (79)

[Dtt]n =
tn+ 1

2
− tn− 1

2

∆t =
(n+ 1

2)∆t− (n− 1
2)∆t

∆t = 1 . (80)

Clearly, all three finite difference approximations to the derivative are exact for
u(t) = t or its mesh function counterpart un = tn.

The difference equation for the Forward Euler scheme

[D+
t u = −au+ b]n,

with an = a(tn), bn = c+ a(tn)(ctn + I), and un = ctn + I then results in

c = −a(tn)(ctn + I) + c+ a(tn)(ctn + I) = c

56

which is always fulfilled. Similar calculations can be done for the Backward
Euler and Crank-Nicolson schemes, or the θ-rule for that matter. In all cases,
un = ctn + I is an exact solution of the discrete equations. That is why we
should expect that un − ue(tn) = 0 mathematically and |un − ue(tn)| less than
a small number about the machine precision for n = 0, . . . , Nt.

The following function offers an implementation of this verification test based
on a linear exact solution:

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*exact_solution(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
print difference
tol = 1E-14 # depends on c!
assert difference < tol

Any error in the updating formula makes this test fail!
Choosing more complicated formulas as the exact solution, say cos(t), will not

make the numerical and exact solution coincide to machine precision, because
finite differencing of cos(t) does not exactly yield the exact derivative − sin(t). In
such cases, the verification procedure must be based on measuring the convergence
rates as exemplified in Section ??. Convergence rates can be computed as long
as one has an exact solution of a problem that the solver can be tested on, but
this can always be obtained by the method of manufactured solutions.

5.6 Extension to systems of ODEs
Many ODE models involves more than one unknown function and more than
one equation. Here is an example of two unknown functions u(t) and v(t):

u′ = au+ bv, (81)
v′ = cu+ dv, (82)

for constants a, b, c, d. Applying the Forward Euler method to each equation
results in simple updating formula

57

un+1 = un + ∆t(aun + bvn), (83)
vn+1 = un + ∆t(cun + dvn) . (84)

On the other hand, the Crank-Nicolson or Backward Euler schemes result in a
2× 2 linear system for the new unknowns. The latter schemes gives

un+1 = un + ∆t(aun+1 + bvn+1), (85)
vn+1 = vn + ∆t(cun+1 + dvn+1) . (86)

Collecting un+1 as well as vn+1 on the left-hand side results in

(1−∆ta)un+1 + bvn+1 = un, (87)
cun+1 + (1−∆td)vn+1 = vn, (88)

which is a system of two coupled, linear, algebraic equations in two unknowns.

6 General first-order ODEs
We now turn the attention to general, nonlinear ODEs and systems of such
ODEs. Our focus is on numerical methods that can be readily reused for time-
discretization PDEs, and diffusion PDEs in particular. The methods are just
briefly listed, and we refer to the rich literature for more detailed descriptions
and analysis - the books [7, 1, 2, 3] are all excellent resources on numerical
methods for ODEs. We also demonstrate the Odespy Python interface to a
range of different software for general first-order ODE systems.

6.1 Generic form of first-order ODEs
ODEs are commonly written in the generic form

u′ = f(u, t), u(0) = I, (89)
where f(u, t) is some prescribed function. As an example, our most general
exponential decay model (69) has f(u, t) = −a(t)u(t) + b(t).

The unknown u in (89) may either be a scalar function of time t, or a vector
valued function of t in case of a system of ODEs with m unknown components:

u(t) = (u(0)(t), u(1)(t), . . . , u(m−1)(t)) .

In that case, the right-hand side is vector-valued function with m components,

f(u, t) = (f (0)(u(0)(t), . . . , u(m−1)(t)),
f (1)(u(0)(t), . . . , u(m−1)(t)),
...,
f (m−1)(u(0)(t), . . . , u(m−1)(t))) .

58

Actually, any system of ODEs can be written in the form (89), but higher-
order ODEs then need auxiliary unknown functions to enable conversion to a
first-order system.

Next we list some well-known methods for u′ = f(u, t), valid both for a single
ODE (scalar u) and systems of ODEs (vector u). The choice of methods is
inspired by the kind of schemes that are popular also for time discretization of
partial differential equations.

6.2 The θ-rule
The θ-rule scheme applied to u′ = f(u, t) becomes

un+1 − un

∆t = θf(un+1, tn+1) + (1− θ)f(un, tn) . (90)

Bringing the unknown un+1 to the left-hand side and the known terms on the
right-hand side gives

un+1 −∆tθf(un+1, tn+1) = un + ∆t(1− θ)f(un, tn) . (91)
For a general f (not linear in u), this equation is nonlinear in the unknown un+1

unless θ = 0. For a scalar ODE (m = 1), we have to solve a single nonlinear
algebraic equation for un+1, while for a system of ODEs, we get a system of
coupled, nonlinear algebraic equations. Newton’s method is a popular solution
approach in both cases. Note that with the Forward Euler scheme (θ = 0) we
do not have to deal with nonlinear equations, because in that case we have an
explicit updating formula for un+1. This is known as an explicit scheme. With
θ 6= 1 we have to solve (systems of) algebraic equations, and the scheme is said
to be implicit.

6.3 An implicit 2-step backward scheme
The implicit backward method with 2 steps applies a three-level backward
difference as approximation to u′(t),

u′(tn+1) ≈ 3un+1 − 4un + un−1

2∆t ,

which is an approximation of order ∆t2 to the first derivative. The resulting
scheme for u′ = f(u, t) reads

un+1 = 4
3u

n − 1
3u

n−1 + 2
3∆tf(un+1, tn+1) . (92)

Higher-order versions of the scheme (92) can be constructed by including more
time levels. These schemes are known as the Backward Differentiation Formulas
(BDF), and the particular version (92) is often referred to as BDF2.

Note that the scheme (92) is implicit and requires solution of nonlinear
equations when f is nonlinear in u. The standard 1st-order Backward Euler
method or the Crank-Nicolson scheme can be used for the first step.

59

6.4 Leapfrog schemes
The ordinary Leapfrog scheme. The derivative of u at some point tn can
be approximated by a central difference over two time steps,

u′(tn) ≈ un+1 − un−1

2∆t = [D2tu]n (93)

which is an approximation of second order in ∆t. The scheme can then be
written as

[D2tu = f(u, t)]n,

in operator notation. Solving for un+1 gives

un+1 = un−1 + ∆tf(un, tn) . (94)

Observe that (94) is an explicit scheme, and that a nonlinear f (in u) is trivial
to handle since it only involves the known un value. Some other scheme must
be used as starter to compute u1, preferably the Forward Euler scheme since it
is also explicit.

The filtered Leapfrog scheme. Unfortunately, the Leapfrog scheme (94)
will develop growing oscillations with time (see Problem 8)[[[. A remedy for
such undesired oscillations is to introduce a filtering technique. First, a standard
Leapfrog step is taken, according to (94), and then the previous un value is
adjusted according to

un ← un + γ(un−1 − 2un + un+1) . (95)

The γ-terms will effectively damp oscillations in the solution, especially those
with short wavelength (like point-to-point oscillations). A common choice of γ is
0.6 (a value used in the famous NCAR Climate Model).

6.5 The 2nd-order Runge-Kutta method
The two-step scheme

u∗ = un + ∆tf(un, tn), (96)

un+1 = un + ∆t12 (f(un, tn) + f(u∗, tn+1)) , (97)

essentially applies a Crank-Nicolson method (97) to the ODE, but replaces the
term f(un+1, tn+1) by a prediction f(u∗, tn+1) based on a Forward Euler step
(96). The scheme (96)-(97) is known as Huen’s method, but is also a 2nd-order
Runge-Kutta method. The scheme is explicit, and the error is expected to behave
as ∆t2.

60

6.6 A 2nd-order Taylor-series method
One way to compute un+1 given un is to use a Taylor polynomial. We may write
up a polynomial of 2nd degree:

un+1 = un + u′(tn)∆t+ 1
2u
′′(tn)∆t2 .

From the equation u′ = f(u, t) it follows that the derivatives of u can be expressed
in terms of f and its derivatives:

u′(tn) = f(un, tn),

u′′(tn) = ∂f

∂u
(un, tn)u′(tn) + ∂f

∂t

= f(un, tn)∂f
∂u

(un, tn) + ∂f

∂t
,

resulting in the scheme

un+1 = un + f(un, tn)∆t+ 1
2

(
f(un, tn)∂f

∂u
(un, tn) + ∂f

∂t

)
∆t2 . (98)

More terms in the series could be included in the Taylor polynomial to obtain
methods of higher order than 2.

6.7 The 2nd- and 3rd-order Adams-Bashforth schemes
The following method is known as the 2nd-order Adams-Bashforth scheme:

un+1 = un + 1
2∆t

(
3f(un, tn)− f(un−1, tn−1)

)
. (99)

The scheme is explicit and requires another one-step scheme to compute u1 (the
Forward Euler scheme or Heun’s method, for instance). As the name implies,
the scheme is of order ∆t2.

Another explicit scheme, involving four time levels, is the 3rd-order Adams-
Bashforth scheme

un+1 = un + 1
12
(
23f(un, tn)− 16f(un−1, tn−1) + 5f(un−2, tn−2)

)
. (100)

The numerical error is of order ∆t3, and the scheme needs some method for
computing u1 and u2.

More general, higher-order Adams-Bashforth schemes (also called explicit
Adams methods) compute un+1 as a linear combination of f at k previous time
steps:

un+1 = un +
k∑
j=0

βjf(un−j , tn−j),

where βj are known coefficients.

61

6.8 The 4th-order Runge-Kutta method
The perhaps most widely used method to solve ODEs is the 4th-order Runge-
Kutta method, often called RK4. Its derivation is a nice illustration of common
numerical approximation strategies, so let us go through the steps in detail.

The starting point is to integrate the ODE u′ = f(u, t) from tn to tn+1:

u(tn+1)− u(tn) =
tn+1∫
tn

f(u(t), t)dt .

We want to compute u(tn+1) and regard u(tn) as known. The task is to find
good approximations for the integral, since the integrand involves the unknown
u between tn and tn+1.

The integral can be approximated by the famous Simpson’s rule:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t
6

(
fn + 4fn+ 1

2 + fn+1
)
.

The problem now is that we do not know fn+ 1
2 = f(un+ 1

2 , tn+ 1
2
) and fn+1 =

(un+1, tn+1) as we know only un and hence fn. The idea is to use various
approximations for fn+ 1

2 and fn+1 based on using well-known schemes for the
ODE in the intervals [tn, tn+ 1

2
] and [tn, tn+1]. We split the integral approximation

into four terms:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t
6

(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
,

where f̂n+ 1
2 , f̃n+ 1

2 , and f̄n+1 are approximations to fn+ 1
2 and fn+1 that can be

based on already computed quantities. For f̂n+ 1
2 we can apply an approximation

to un+ 1
2 using the Forward Euler method with step 1

2∆t:

f̂n+ 1
2 = f(un + 1

2∆tfn, tn+ 1
2
) (101)

Since this gives us a prediction of fn+ 1
2 , we can for f̃n+ 1

2 try a Backward Euler
method to approximate un+ 1

2 :

f̃n+ 1
2 = f(un + 1

2∆tf̂n+ 1
2 , tn+ 1

2
) . (102)

With f̃n+ 1
2 as a hopefully good approximation to fn+ 1

2 , we can for the final
term f̄n+1 use a Crank-Nicolson method to approximate un+1:

f̄n+1 = f(un + ∆tf̂n+ 1
2 , tn+1) . (103)

We have now used the Forward and Backward Euler methods as well as the
Crank-Nicolson method in the context of Simpson’s rule. The hope is that the

62

http://en.wikipedia.org/wiki/Simpson's_rule

combination of these methods yields an overall time-stepping scheme from tn to
tn+1 that is much more accurate than the O(∆t) and O(∆t2) of the individual
steps. This is indeed true: the overall accuracy is O(∆t4)!

To summarize, the 4th-order Runge-Kutta method becomes

un+1 = un + ∆t
6

(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
, (104)

where the quantities on the right-hand side are computed from (101)-(103).
Note that the scheme is fully explicit so there is never any need to solve linear
or nonlinear algebraic equations. However, the stability is conditional and
depends on f . There is a whole range of implicit Runge-Kutta methods that are
unconditionally stable, but require solution of algebraic equations involving f at
each time step.

The simplest way to explore more sophisticated methods for ODEs is to
apply one of the many high-quality software packages that exist, as the next
section explains.

6.9 The Odespy software
A wide range of the methods and software exist for solving (89). Many of
methods are accessible through a unified Python interface offered by the Ode-
spy [5] package. Odespy features simple Python implementations of the most
fundamental schemes as well as Python interfaces to several famous packages
for solving ODEs: ODEPACK, Vode, rkc.f, rkf45.f, Radau5, as well as the ODE
solvers in SciPy, SymPy, and odelab.

The usage of Odespy follows this setup for the ODE u′ = −au, u(0) = I,
t ∈ (0, T], here solved by the famous 4th-order Runge-Kutta method, using
∆t = 1 and Nt = 6 steps:

def f(u, t):
return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

The previously listed methods for ODEs are all accessible in Odespy:

• the θ-rule: ThetaRule

• special cases of the θ-rule: ForwardEuler, BackwardEuler, CrankNicolson

• the 2nd- and 4th-order Runge-Kutta methods: RK2 and RK4

• The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda,
lsoda_scipy

• The Leapfrog scheme: Leapfrog and LeapfrogFiltered

63

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy
https://computation.llnl.gov/casc/odepack/odepack_home.html
https://computation.llnl.gov/casc/odepack/odepack_home.html
http://www.netlib.org/ode/rkc.f
http://www.netlib.org/ode/rkf45.f
http://www.unige.ch/~hairer/software.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
http://olivierverdier.github.com/odelab/

6.10 Example: Runge-Kutta methods
Since all solvers have the same interface in Odespy, modulo different set of
parameters to the solvers’ constructors, one can easily make a list of solver
objects and run a loop for comparing (a lot of) solvers. The code below, found in
complete form in decay_odespy.py, compares the famous Runge-Kutta methods
of orders 2, 3, and 4 with the exact solution of the decay equation u′ = −au.
Since we have quite long time steps, we have included the only relevant θ-rule
for large time steps, the Backward Euler scheme (θ = 1), as well. Figure 15
shows the results.

import numpy as np
import scitools.std as plt
import sys

def f(u, t):
return -a*u

I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),
odespy.BackwardEuler(f, nonlinear_solver=’Newton’)]

legends = []
for solver in solvers:

solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, u)
plt.hold(’on’)
legends.append(solver.__class__.__name__)

Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line type
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

Even though our ODE is linear, odespy.BackwardEuler will launch a nonlinear
solver, which is Picard iteration by default, but that method leads to divergence.
Specifying Newton’s method leads to convergence in one iteration as expected
in linear problems.

Visualization tip.

64

http://tinyurl.com/nm5587k/decay/decay_odespy.py

We use SciTools for plotting here, but importing matplotlib.pyplot as
plt instead also works. However, plain use of Matplotlib as done here
results in curves with different colors, which may be hard to distinguish
on black-and-white paper. Using SciTools, curves are automatically given
colors and markers, thus making curves easy to distinguish on screen with
colors and on black-and-white paper. The automatic adding of markers is
normally a bad idea for a very fine mesh since all the markers get cluttered,
but SciTools limits the number of markers in such cases. For the exact
solution we use a very fine mesh, but in the code above we specify the line
type as a solid line (-), which means no markers and just a color to be
automatically determined by the backend used for plotting (Matplotlib
by default, but SciTools gives the opportunity to use other backends to
produce the plot, e.g., Gnuplot or Grace).

Also note the that the legends are based on the class names of the
solvers, and in Python the name of a the class type (as a string) of an
object obj is obtained by obj.__class__.__name__.

Figure 15: Behavior of different schemes for the decay equation.

The runs in Figure 15 and other experiments reveal that the 2nd-order
Runge-Kutta method (RK2) is unstable for ∆t > 1 and decays slower than the
Backward Euler scheme for large and moderate ∆t (see Exercise 7 for an analysis).
However, for fine ∆t = 0.25 the 2nd-order Runge-Kutta method approaches

65

the exact solution faster than the Backward Euler scheme. That is, the latter
scheme does a better job for larger ∆t, while the higher order scheme is superior
for smaller ∆t. This is a typical trend also for most schemes for ordinary and
partial differential equations.

The 3rd-order Runge-Kutta method (RK3) has also artifacts in form of
oscillatory behavior for the larger ∆t values, much like that of the Crank-
Nicolson scheme. For finer ∆t, the 3rd-order Runge-Kutta method converges
quickly to the exact solution.

The 4th-order Runge-Kutta method (RK4) is slightly inferior to the Backward
Euler scheme on the coarsest mesh, but is then clearly superior to all the other
schemes. It is definitely the method of choice for all the tested schemes.

Remark about using the θ-rule in Odespy. The Odespy package assumes
that the ODE is written as u′ = f(u, t) with an f that is possibly nonlinear in u.
The θ-rule for u′ = f(u, t) leads to

un+1 = un + ∆t
(
θf(un+1, tn+1) + (1− θ)f(un, tn)

)
,

which is a nonlinear equation in un+1. Odespy’s implementation of the θ-rule
(ThetaRule) and the specialized Backward Euler (BackwardEuler) and Crank-
Nicolson (CrankNicolson) schemes must invoke iterative methods for solving
the nonlinear equation in un+1. This is done even when f is linear in u, as
in the model problem u′ = −au, where we can easily solve for un+1 by hand.
Therefore, we need to specify use of Newton’s method to the equations. (Odespy
allows other methods than Newton’s to be used, for instance Picard iteration,
but that method is not suitable. The reason is that it applies the Forward Euler
scheme to generate a start value for the iterations. Forward Euler may give very
wrong solutions for large ∆t values. Newton’s method, on the other hand, is
insensitive to the start value in linear problems.)

6.11 Example: Adaptive Runge-Kutta methods
Odespy offers solution methods that can adapt the size of ∆t with time to match
a desired accuracy in the solution. Intuitively, small time steps will be chosen in
areas where the solution is changing rapidly, while larger time steps can be used
where the solution is slowly varying. Some kind of error estimator is used to
adjust the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormand-Prince
Runge-Kutta method of order 4 and 5. The 5th-order method is used as a
reference solution and the difference between the 4th- and 5th-order methods is
used as an indicator of the error in the numerical solution. The Dormand-Prince
method is the default choice in MATLAB’s widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method and see
how it selects the optimal time steps. To this end, we request only one time step
from t = 0 to t = T and ask the method to compute the necessary non-uniform
time mesh to meet a certain error tolerance. The code goes like

66

import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def exact_solution(t):
return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)

Nt = 1 # just one step - let the scheme find its intermediate points
t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

u and t will only consist of [I, u^Nt] and [0,T]
solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)
plt.hold(’on’)
plt.plot(t_fine, exact_solution(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)
plt.show()

Running four cases with tolerances 10−1, 10−3, 10−5, and 10−7, gives the
results in Figure 16. Intuitively, one would expect denser points in the beginning
of the decay and larger time steps when the solution flattens out.

67

Figure 16: Choice of adaptive time mesh by the Dormand-Prince method for
different tolerances.

7 Exercises
Exercise 3: Experiment with precision in tests and the size
of u
It is claimed in Section 5.5 that most numerical methods will reproduce a linear
exact solution to machine precision. Test this assertion using the test function
test_linear_solution in the decay_vc.py program. Vary the parameter c
from very small, via c=1 to many larger values, and print out the maximum
difference between the numerical solution and the exact solution. What is the
relevant value of the tolerance in the float comparison in each case? Filename:
test_precision.py.

68

http://tinyurl.com/nm5587k/decay/decay_vc.py

Exercise 4: Implement the 2-step backward scheme
Implement the 2-step backward method (92) for the model u′(t) = −a(t)u(t) +
b(t), u(0) = I. Allow the first step to be computed by either the Backward
Euler scheme or the Crank-Nicolson scheme. Verify the implementation by
choosing a(t) and b(t) such that the exact solution is linear in t (see Section 5.5).
Show mathematically that a linear solution is indeed a solution of the discrete
equations.

Compute convergence rates (see Section ??) in a test case a = const and
b = 0, where we easily have an exact solution, and determine if the choice of
a first-order scheme (Backward Euler) for the first step has any impact on the
overall accuracy of this scheme. The expected error goes like O(∆t2). Filename:
decay_backward2step.py.

Exercise 5: Implement the 2nd-order Adams-Bashforth scheme
Implement the 2nd-order Adams-Bashforth method (99) for the decay problem
u′ = −a(t)u+ b(t), u(0) = I, t ∈ (0, T]. Use the Forward Euler method for the
first step such that the overall scheme is explicit. Verify the implementation
using an exact solution that is linear in time. Analyze the scheme by searching
for solutions un = An when a = const and b = 0. Compare this second-order
secheme to the Crank-Nicolson scheme. Filename: decay_AdamsBashforth2.py.

Exercise 6: Implement the 3rd-order Adams-Bashforth scheme
Implement the 3rd-order Adams-Bashforth method (100) for the decay problem
u′ = −a(t)u+b(t), u(0) = I, t ∈ (0, T]. Since the scheme is explicit, allow it to be
started by two steps with the Forward Euler method. Investigate experimentally
the case where b = 0 and a is a constant: Can we have oscillatory solutions for
large ∆t? Filename: decay_AdamsBashforth3.py.

Exercise 7: Analyze explicit 2nd-order methods
Show that the schemes (97) and (98) are identical in the case f(u, t) = −a, where
a > 0 is a constant. Assume that the numerical solution reads un = An for some
unknown amplification factor A to be determined. Find A and derive stability
criteria. Can the scheme produce oscillatory solutions of u′ = −au? Plot the
numerical and exact amplification factor. Filename: decay_RK2_Taylor2.py.

Problem 8: Implement and investigate the Leapfrog scheme
A Leapfrog scheme for the ODE u′(t) = −a(t)u(t) + b(t) is defined by

[D2tu = −au+ b]n .

A separate method is needed to compute u1. The Forward Euler scheme is a
possible candidate.

69

a) Implement the Leapfrog scheme for the model equation. Plot the solution
in the case a = 1, b = 0, I = 1, ∆t = 0.01, t ∈ [0, 4]. Compare with the exact
solution ue(t) = e−t.

b) Show mathematically that a linear solution in t fulfills the Forward Euler
scheme for the first step and the Leapfrog scheme for the subsequent steps. Use
this linear solution to verify the implementation, and automate the verification
through a test function.

Hint. It can be wise to automate the calculations such that it is easy to redo
the calculations for other types of solutions. Here is a possible sympy function
that takes a symbolic expression u (implemented as a Python function of t), fits
the b term, and checks if u fulfills the discrete equations:

import sympy as sp

def analyze(u):
t, dt, a = sp.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=%s’ % u(t).subs(t, 0)

Fit source term to the given u(t)
b = sp.diff(u(t), t) + a*u(t)
b = sp.simplify(b)
print ’Source term b:’, b

Residual in discrete equations; Forward Euler step
R_step1 = (u(t+dt) - u(t))/dt + a*u(t) - b
R_step1 = sp.simplify(R_step1)
print ’Residual Forward Euler step:’, R_step1

Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
R = sp.simplify(R)
print ’Residual Leapfrog steps:’, R

def u_e(t):
return c*t + I

analyze(u_e)
or short form: analyze(lambda t: c*t + I)

c) Show that a second-order polynomial in t cannot be a solution of the discrete
equations. However, if a Crank-Nicolson scheme is used for the first step, a
second-order polynomial solves the equations exactly.

d) Create a manufactured solution u(t) = sin(t) for the ODE u′ = −au + b.
Compute the convergence rate of the Leapfrog scheme using this manufactured
solution. The expected convergence rate of the Leapfrog scheme is O(∆t2). Does
the use of a 1st-order method for the first step impact the convergence rate?

70

e) Set up a set of experiments to demonstrate that the Leapfrog scheme (94) is
associated with numerical artifacts (instabilities). Document the main results
from this investigation.

f) Analyze and explain the instabilities of the Leapfrog scheme (94):

1. Choose a = const and b = 0. Assume that an exact solution of the discrete
equations has the form un = An, where A is an amplification factor to
be determined. Derive an equation for A by inserting un = An in the
Leapfrog scheme.

2. Compute A either by hand and/or with the aid of sympy. The polynomial
for A has two roots, A1 and A2. Let un be a linear combination un =
C1A

n
1 + C2A

n
2 .

3. Show that one of the roots is the explanation of the instability.

4. Compare A with the exact expression, using a Taylor series approximation.

5. How can C1 and C2 be determined?

g) Since the original Leapfrog scheme is unconditionally unstable as time grows,
it demands some stabilization. This can be done by filtering, where we first find
un+1 from the original Leapfrog scheme and then replace un by un + γ(un−1 −
2un + un+1), where γ can be taken as 0.6. Implement the filtered Leapfrog
scheme and check that it can handle tests where the original Leapfrog scheme is
unstable.
Filenames: decay_leapfrog.py, decay_leapfrog.pdf.

Problem 9: Make a unified implementation of many schemes
Consider the linear ODE problem u′(t) = −a(t)u(t) + b(t), u(0) = I. Explicit
schemes for this problem can be written in the general form

un+1 =
m∑
j=0

cju
n−j , (105)

for some choice of c0, . . . , cm. Find expressions for the cj coefficients in case of
the θ-rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order
Runge-Kutta method, and the 3rd-order Adams-Bashforth scheme.

Make a class ExpDecay that implements the general updating formula (105).
The formula cannot be applied for n < m, and for those n values, other schemes
must be used. Assume for simplicity that we just repeat Crank-Nicolson steps
until (105) can be used. Use a subclass to specify the list c0, . . . , cm for a
particular method, and implement subclasses for all the mentioned schemes.
Verify the implementation by testing with a linear solution, which should be
exactly reproduced by all methods. Filename: decay_schemes_oo.py.

71

8 Applications of exponential decay models
This section presents many mathematical models that all end up with ODEs of
the type u′ = −au+ b. The applications are taken from biology, finance, and
physics, and cover population growth or decay, compound interest and inflation,
radioactive decay, cooling of objects, compaction of geological media, pressure
variations in the atmosphere, and air resistance on falling or rising bodies.

8.1 Scaling
Real applications of a model u′ = −au+ b will often involve a lot of parameters
in the expressions for a and b. It can be quite a challenge to find relevant values
of all parameters. In simple problems, however, it turns out that it is not always
necessary to estimate all parameters because we can lump them into one or a
few dimensionless numbers by using a very attractive technique called scaling. It
simply means to stretch the u and t axis is the present problem - and suddenly all
parameters in the problem are lumped one parameter if b 6= 0 and no parameter
when b = 0!

Scaling means that we introduce a new function ū(t̄), with

ū = u− um
uc

, t̄ = t

tc
,

where um is a characteristic value of u, uc is a characteristic size of the range of u
values, and tc is a characteristic size of the range of tc where u varies significantly.
Choosing um, uc, and tc is not always easy and often an art in complicated
problems. We just state one choice first:

uc = I, um = b/a, tc = 1/a .

Inserting u = um + ucū and t = tct̄ in the problem u′ = −au + b, assuming a
and b are constants, results after some algebra in the scaled problem

dū

dt̄
= −ū, ū(0) = 1− β,

where β is a dimensionless number

β = b

Ia
.

That is, only the special combination of b/(Ia) matters, not what the individual
values of b, a, and I are. Moreover, if b = 0, the scaled problem is independent
of a and I! In practice this means that we can perform one numerical simulation
of the scaled problem and recover the solution of any problem for a given a and
I by stretching the axis in the plot: u = Iū and t = t̄/a. For b 6= 0, we simulate
the scaled problem for a few β values and recover the physical solution u by
translating and stretching the u axis and stretching the t axis.

The scaling breaks down if I = 0. In that case we may choose um = 0,
uc = b/a, and tc = 1/b, resulting in a slightly different scaled problem:

72

dū

dt̄
= 1− ū, ū(0) = 0 .

As with b = 0, the case I = 0 has a scaled problem with no physical parameters!
It is common to drop the bars after scaling and write the scaled problem

as u′ = −u, u(0) = 1− β, or u′ = 1− u, u(0) = 0. Any implementation of the
problem u′ = −au+ b, u(0) = I, can be reused for the scaled problem by setting
a = 1, b = 0, and I = 1 − β in the code, if I 6= 0, or one sets a = 1, b = 1,
and I = 0 when the physical I is zero. Falling bodies in fluids, as described in
Section 8.8, involves u′ = −au + b with seven physical parameters. All these
vanish in the scaled version of the problem if we start the motion from rest!

8.2 Evolution of a population
Let N be the number of individuals in a population occupying some spatial
domain. Despite N being an integer in this problem, we shall compute with N
as a real number and view N(t) as a continuous function of time. The basic
model assumption is that in a time interval ∆t the number of newcomers to the
populations (newborns) is proportional to N , with proportionality constant b̄.
The amount of newcomers will increase the population and result in to

N(t+ ∆t) = N(t) + b̄N(t) .
It is obvious that a long time interval ∆t will result in more newcomers and
hence a larger b̄. Therefore, we introduce b = b̄/∆t: the number of newcomers
per unit time and per individual. We must then multiply b by the length of the
time interval considered and by the population size to get the total number of
new individuals, b∆tN .

If the number of removals from the population (deaths) is also proportional
to N , with proportionality constant d∆t, the population evolves according to

N(t+ ∆t) = N(t) + b∆tN(t)− d∆tN(t) .

Dividing by ∆t and letting ∆t→ 0, we get the ODE

N ′ = (b− d)N, N(0) = N0 . (106)
In a population where the death rate (d) is larger than then newborn rate (b),
a > 0, and the population experiences exponential decay rather than exponential
growth.

In some populations there is an immigration of individuals into the spatial
domain. With I individuals coming in per time unit, the equation for the
population change becomes

N(t+ ∆t) = N(t) + b∆tN(t)− d∆tN(t) + ∆tI .
The corresponding ODE reads

N ′ = (b− d)N + I, N(0) = N0 . (107)

73

Some simplification arises if we introduce a fractional measure of the popula-
tion: u = N/N0 and set r = b− d. The ODE problem now becomes

u′ = ru+ f, u(0) = 1, (108)

where f = I/N0 measures the net immigration per time unit as the fraction of
the initial population. Very often, r is approximately constant, but f is usually
a function of time.

The growth rate r of a population decreases if the environment has limited
resources. Suppose the environment can sustain at most Nmax individuals. We
may then assume that the growth rate approaches zero as N approaches Nmax,
i.e., as u approaches M = Nmax/N0. The simplest possible evolution of r is
then a linear function: r(t) = r0(1− u(t)/M), where r0 is the initial growth rate
when the population is small relative to the maximum size and there is enough
resources. Using this r(t) in (108) results in the logistic model for the evolution
of a population (assuming for the moment that f = 0):

u′ = r0(1− u/M)u, u(0) = 1 . (109)

Initially, u will grow at rate r0, but the growth will decay as u approaches M ,
and then there is no more change in u, causing u → M as t → ∞. Note that
the logistic equation u′ = r0(1− u/M)u is nonlinear because of the quadratic
term −u2r0/M .

8.3 Compound interest and inflation
Say the annual interest rate is r percent and that the bank adds the interest
once a year to your investment. If un is the investment in year n, the investment
in year un+1 grows to

un+1 = un + r

100u
n .

In reality, the interest rate is added every day. We therefore introduce a parameter
m for the number of periods per year when the interest is added. If n counts
the periods, we have the fundamental model for compound interest:

un+1 = un + r

100mun . (110)

This model is a difference equation, but it can be transformed to a continuous
differential equation through a limit process. The first step is to derive a formula
for the growth of the investment over a time t. Starting with an investment u0,

74

and assuming that r is constant in time, we get

un+1 =
(

1 + r

100m

)
un

=
(

1 + r

100m

)2
un−1

...

=
(

1 + r

100m

)n+1
u0

Introducing time t, which here is a real-numbered counter for years, we have
that n = mt, so we can write

umt =
(

1 + r

100m

)mt
u0 .

The second step is to assume continuous compounding, meaning that the interest
is added continuously. This implies m → ∞, and in the limit one gets the
formula

u(t) = u0e
rt/100, (111)

which is nothing but the solution of the ODE problem

u′ = r

100u, u(0) = u0 . (112)

This is then taken as the ODE model for compound interest if r > 0. However,
the reasoning applies equally well to inflation, which is just the case r < 0.
One may also take the r in (112) as the net growth of an investemt, where r
takes both compound interest and inflation into account. Note that for real
applications we must use a time-dependent r in (112).

Introducing a = r
100 , continuous inflation of an initial fortune I is then a

process exhibiting exponential decay according to

u′ = −au, u(0) = I .

8.4 Radioactive Decay
An atomic nucleus of an unstable atom may lose energy by emitting ionizing
particles and thereby be transformed to a nucleus with a different number of
protons and neutrons. This process is known as radioactive decay. Actually,
the process is stochastic when viewed for a single atom, because it is impossible
to predict exactly when a particular atom emits a particle. Nevertheless, with
a large number of atoms, N , one may view the process as deterministic and
compute the mean behavior of the decay. Below we reason intuitively about
an ODE for the mean behavior. Thereafter, we show mathematically that a
detailed stochastic model for single atoms leads the same mean behavior.

75

http://en.wikipedia.org/wiki/Radioactive_decay

Deterministic model. Suppose at time t, the number of the original atom
type is N(t). A basic model assumption is that the transformation of the atoms
of the original type in a small time interval ∆t is proportional to N , so that

N(t+ ∆t) = N(t)− a∆tN(t),

where a > 0 is a constant. Introducing u = N(t)/N(0), dividing by ∆t and
letting ∆t→ 0 gives the following ODE:

u′ = −au, u(0) = 1 . (113)

The parameter a can for a given nucleus be expressed through the half-life t1/2,
which is the time taken for the decay to reduce the initial amount by one half,
i.e., u(t1/2) = 0.5. With u(t) = e−at, we get t1/2 = a−1 ln 2 or a = ln 2/t1/2.

Stochastic model. We have originally N0 atoms. Each atom may have
decayed or survived at a particular time t. We want to count how many
original atoms that are left, i.e., how many atoms that have survived. The
survival of a single atom at time t is a random event. Since there are only two
outcomes, survival or decay, we have a Bernoulli trial. Let p be the probability of
survival (implying that the probability of decay is 1− p). If each atom survives
independently of the others, and the probability of survival is the same for every
atom, we have N0 statistically Bernoulli trials, known as a binomial experiment
from probability theory. The probability P (N) that N out of the N0 atoms have
survived at time t is then given by the famous binomial distribution

P (N) = N0!
N !(N0 −N)!p

N (1− p)N0−N .

The mean (or expected) value E[P] of P (N) is known to be N0p.
It remains to estimate p. Let the interval [0, t] be divided into m small

subintervals of length ∆t. We make the assumption that the probability of
decay of a single atom in an interval of length ∆t is p̃, and that this probability
is proportional to ∆t: p̃ = λ∆t (it sounds natural that the probability of
decay increases with ∆t). The corresponding probability of survival is 1− λ∆t.
Believing that λ is independent of time, we have, for each interval of length ∆t,
a Bernoulli trial: the atom either survives or decays in that interval. Now, p
should be the probability that the atom survives in all the intervals, i.e., that
we have m successful Bernoulli trials in a row and therefore

p = (1− λ∆t)m .

The expected number of atoms of the original type at time t is

E[P] = N0p = N0(1− λ∆t)m, m = t/∆t . (114)

To see the relation between the two types of Bernoulli trials and the ODE
above, we go to the limit ∆t→ t, m→∞. One can show that

76

http://en.wikipedia.org/wiki/Bernoulli_trial

p = lim
m→∞

(1− λ∆t)m = lim
m→∞

(
1− λ t

m

)m
= e−λt

This is the famous exponential waiting time (or arrival time) distribution for
a Poisson process in probability theory (obtained here, as often done, as the
limit of a binomial experiment). The probability of decay, 1− e−λt, follows an
exponential distribution. The limit means that m is very large, hence ∆t is very
small, and p̃ = λ∆t is very small since the intensity of the events, λ, is assumed
finite. This situation corresponds to a very small probability that an atom will
decay in a very short time interval, which is a reasonable model. The same
model occurs in lots of different applications, e.g., when waiting for a taxi, or
when finding defects along a rope.

Relation between stochastic and deterministic models. With p = e−λt

we get the expected number of original atoms at t as N0p = N0e
−λt, which

is exactly the solution of the ODE model N ′ = −λN . This gives also an
interpretation of a via λ or vice versa. Our important finding here is that the
ODE model captures the mean behavior of the underlying stochastic model.
This is, however, not always the common relation between microscopic stochastic
models and macroscopic "averaged" models.

Also of interest is to see that a Forward Euler discretization of N ′ = −λN ,
N(0) = N0, gives Nm = N0(1 − λ∆t)m at time tm = m∆t, which is exactly
the expected value of the stochastic experiment with N0 atoms and m small
intervals of length ∆t, where each atom can decay with probability λ∆t in an
interval.

A fundamental question is how accurate the ODE model is. The underlying
stochastic model fluctuates around its expected value. A measure of the fluc-
tuations is the standard deviation of the binomial experiment with N0 atoms,
which can be shown to be Std[P] =

√
N0p(1− p). Compared to the size of the

expectation, we get the normalized standard deviation

√
Var[P]
E[P] = N

−1/2
0

√
p−1 − 1 = N

−1/2
0

√
(1− e−λt)−1 − 1 ≈ (N0λt)−1/2,

showing that the normalized fluctuations are very small if N0 is very large, which
is usually the case.

8.5 Newton’s law of cooling
When a body at some temperature is placed in a cooling environment, experi-
ence shows that the temperature falls rapidly in the beginning, and then the
changes in temperature levels off until the body’s temperature equals that of
the surroundings. Newton carried out some experiments on cooling hot iron
and found that the temperature evolved as a “geometric progression at times in
arithmetic progression”, meaning that the temperature decayed exponentially.

77

http://en.wikipedia.org/wiki/Exponential_distribution

Later, this result was formulated as a differential equation: the rate of change of
the temperature in a body is proportional to the temperature difference between
the body and its surroundings. This statement is known as Newton’s law of
cooling, which can be mathematically expressed as

dT

dt
= −k(T − Ts), (115)

where T is the temperature of the body, Ts is the temperature of the surroundings,
which may be time-dependent, t is time, and k is a positive constant. Equation
(133) is primarily viewed as an empirical law, valid when heat is efficiently
convected away from the surface of the body by a flowing fluid such as air at
constant temperature Ts. The heat transfer coefficient k reflects the transfer of
heat from the body to the surroundings and must be determined from physical
experiments.

The cooling law (133) needs an initial condition T (0) = T0.

8.6 Decay of atmospheric pressure with altitude
Vertical equilibrium of air in the atmosphere is governed by the equation

dp

dz
= −%g . (116)

Here, p(z) is the air pressure, % is the density of air, and g = 9.807 m/s2 is a
standard value of the acceleration of gravity. (Equation (116) follows directly
from the general Navier-Stokes equations for fluid motion, with the assumption
that the air does not move.)

The pressure is related to density and temperature through the ideal gas law

% = Mp

R∗T
, (117)

where M is the molar mass of the Earth’s air (0.029 kg/mol), R∗ is the universal
gas constant (8.314 Nm/(mol K)), and T is the temperature. All variables p, %,
and T vary with the height z. Inserting (117) in (116) results in an ODE with a
variable coefficient:

dp

dz
= − Mg

R∗T (z)p . (118)

Multiple atmospheric layers. The atmosphere can be approximately mod-
eled by seven layers. In each layer, (118) is applied with a linear temperature of
the form

T (z) = T̄i + Li(z − hi),
where z = hi denotes the bottom of layer number i, having temperature T̄i, and
Li is a constant in layer number i. The table below lists hi (m), T̄i (K), and Li
(K/m) for the layers i = 0, . . . , 6.

78

i hi T̄i Li
0 0 288 -0.0065
1 11,000 216 0.0
2 20,000 216 0.001
3 32,000 228 0.0028
4 47,000 270 0.0
5 51,000 270 -0.0028
6 71,000 214 -0.002

For implementation it might be convenient to write (118) on the form

dp

dz
= − Mg

R∗(T̄ (z) + L(z)(z − h(z)))
p, (119)

where T̄ (z), L(z), and h(z) are piecewise constant functions with values given in
the table. The value of the pressure at the sea level z = 0, p0 = p(0), is 101325
Pa.

Simplification: L = 0. One commonly used simplification is to assume that
the temperature is constant within each layer. This means that L = 0.

Simplification: one-layer model. Another commonly used approximation
is to work with one layer instead of seven. This one-layer model is based on
T (z) = T0−Lz, with sea level standard temperature T0 = 288 K and temperature
lapse rate L = 0.0065 K/m.

8.7 Compaction of sediments
Sediments, originally made from materials like sand and mud, get compacted
through geological time by the weight of new material that is deposited on the
sea bottom. The porosity φ of the sediments tells how much void (fluid) space
there is between the sand and mud grains. The porosity reduces with depth
because the weight of the sediments above and causes the void space to shrink
and thereby increase the compaction.

A typical assumption is that the change in φ at some depth z is negatively
proportional to φ. This assumption leads to the differential equation problem

dφ

dz
= −cφ, φ(0) = φ0, (120)

where the z axis points downwards, z = 0 is the surface with known porosity,
and c > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers stacked
on top of each other, as indicated in Figure 17. The model (120) can be applied
for each layer. In layer number i, we have the unknown porosity function φi(z)
fulfilling φ′i(z) = −ciz, since the constant c in the model (120) depends on
the type of sediment in the layer. From the figure we see that new layers of

79

http://en.wikipedia.org/wiki/Density_of_air

sediments are deposited on top of older ones as time progresses. The compaction,
as measured by φ, is rapid in the beginning and then decreases (exponentially)
with depth in each layer.

Figure 17: Illustration of the compaction of geological layers (with different
colors) through time.

When we drill a well at present time through the right-most column of
sediments in Figure 17, we can measure the thickness of the sediment in (say) the
bottom layer. Let L1 be this thickness. Assuming that the volume of sediment
remains constant through time, we have that the initial volume,

∫ L1,0
0 φ1dz, must

equal the volume seen today,
∫ `
`−L1

φ1dz, where ` is the depth of the bottom of
the sediment in the present day configuration. After having solved for φ1 as a
function of z, we can then find the original thickness L1,0 of the sediment from
the equation ∫ L1,0

0
φ1dz =

∫ `

`−L1

φ1dz .

In hydrocarbon exploration it is important to know L1,0 and the compaction
history of the various layers of sediments.

8.8 Vertical motion of a body in a viscous fluid
A body moving vertically through a fluid (liquid or gas) is subject to three
different types of forces: the gravity force, the drag force, and the buoyancy
force.

80

http://en.wikipedia.org/wiki/Drag_(physics)

Overview of forces. The gravity force is Fg = −mg, where m is the mass
of the body and g is the acceleration of gravity. The uplift or buoyancy force
("Archimedes force") is Fb = %gV , where % is the density of the fluid and V is
the volume of the body. Forces and other quantities are taken as positive in the
upward direction.

The drag force is of two types, depending on the Reynolds number

Re = %d|v|
µ

, (121)

where d is the diameter of the body in the direction perpendicular to the flow, v
is the velocity of the body, and µ is the dynamic viscosity of the fluid. When
Re < 1, the drag force is fairly well modeled by the so-called Stokes’ drag, which
for a spherical body of diameter d reads

F
(S)
d = −3πdµv . (122)

For large Re, typically Re > 103, the drag force is quadratic in the velocity:

F
(q)
d = −1

2CD%A|v|v, (123)

where CD is a dimensionless drag coefficient depending on the body’s shape,
and A is the cross-sectional area as produced by a cut plane, perpendicular to
the motion, through the thickest part of the body. The superscripts q and S in
F

(S)
d and F (q)

d indicate Stokes drag and quadratic drag, respectively.

Equation of motion. All the mentioned forces act in the vertical direction.
Newton’s second law of motion applied to the body says that the sum of these
forces must equal the mass of the body times its acceleration a in the vertical
direction.

ma = Fg + F
(S)
d + Fb .

Here we have chosen to model the fluid resistance by the Stokes drag. Inserting
the expressions for the forces yields

ma = −mg − 3πdµv + %gV .

The unknowns here are v and a, i.e., we have two unknowns but only one
equation. From kinematics in physics we know that the acceleration is the time
derivative of the velocity: a = dv/dt. This is our second equation. We can easily
eliminate a and get a single differential equation for v:

m
dv

dt
= −mg − 3πdµv + %gV .

A small rewrite of this equation is handy: We express m as %bV , where %b is the
density of the body, and we divide by the mass to get

81

v′(t) = −3πdµ
%bV

v + g

(
%

%b
− 1
)
. (124)

We may introduce the constants

a = 3πdµ
%bV

, b = g

(
%

%b
− 1
)
, (125)

so that the structure of the differential equation becomes obvious:

v′(t) = −av(t) + b . (126)

The corresponding initial condition is v(0) = v0 for some prescribed starting
velocity v0.

This derivation can be repeated with the quadratic drag force F (q)
d , leading

to the result

v′(t) = −1
2CD

%A

%bV
|v|v + g

(
%

%b
− 1
)
. (127)

Defining

a = 1
2CD

%A

%bV
, (128)

and b as above, we can write (127) as

v′(t) = −a|v|v + b . (129)

Terminal velocity. An interesting aspect of (126) and (129) is whether v will
approach a final constant value, the so-called terminal velocity vT , as t→∞. A
constant v means that v′(t)→ 0 as t→∞ and therefore the terminal velocity
vT solves

0 = −avT + b

and
0 = −a|vT |vT + b .

The former equation implies vT = b/a, while the latter has solutions vT =
−
√
|b|/a for a falling body (vT < 0) and vT =

√
b/a for a rising body (vT > 0).

A Crank-Nicolson scheme. Both governing equations, the Stokes’ drag
model (126) and the quadratic drag model (129), can be readily solved by the
Forward Euler scheme. For higher accuracy one can use the Crank-Nicolson
method, but a straightforward application this method results a nonlinear
equation in the new unknown value vn+1 when applied to (129):

82

vn+1 − vn

∆t = −a1
2(|vn+1|vn+1 + |vn|vn) + b . (130)

However, instead of approximating the term −|v|v by an arithmetic average, we
can use a geometric mean:

(|v|v)n+ 1
2 ≈ |vn|vn+1 . (131)

The error is of second order in ∆t, just as for the arithmetic average and the
centered finite difference approximation in (130). With this approximation trick,
the discrete equation

vn+1 − vn

∆t = −a|vn|vn+1 + b

becomes a linear equation in vn+1, and we can therefore easily solve for vn+1:

vn+1 = vn + ∆tbn+ 1
2

1 + ∆tan+ 1
2 |vn|

. (132)

Physical data. Suitable values of µ are 1.8·10−5 Pa s for air and 8.9·10−4 Pa s
for water. Densities can be taken as 1.2 kg/m3 for air and as 1.0 · 103 kg/m3

for water. For considerable vertical displacement in the atmosphere one should
take into account that the density of air varies with the altitude, see Section 8.6.
One possible density variation arises from the one-layer model in the mentioned
section.

Any density variation makes b time dependent and we need bn+ 1
2 in (132).

To compute the density that enters bn+ 1
2 we must also compute the vertical

position z(t) of the body. Since v = dz/dt, we can use a centered difference
approximation:

zn+ 1
2 − zn− 1

2

∆t = vn ⇒ zn+ 1
2 = zn−

1
2 + ∆t vn .

This zn+ 1
2 is used in the expression for b to compute %(zn+ 1

2) and then bn+ 1
2 .

The drag coefficient CD depends heavily on the shape of the body. Some
values are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0.82 for a
long cylinder (when the center axis is in the vertical direction), 0.75 for a rocket,
1.0-1.3 for a man in upright position, 1.3 for a flat plate perpendicular to the
flow, and 0.04 for a streamlined, droplet-like body.

Verification. To verify the program, one may assume a heavy body in air
such that the Fb force can be neglected, and further assume a small velocity
such that the air resistance Fd can also be neglected. This can be obtained by
setting µ and % to zero. The motion then leads to the velocity v(t) = v0 − gt,
which is linear in t and therefore should be reproduced to machine precision
(say tolerance 10−15) by any implementation based on the Crank-Nicolson or
Forward Euler schemes.

83

http://en.wikipedia.org/wiki/Drag_coefficient

Another verification, but not as powerful as the one above, can be based on
computing the terminal velocity and comparing with the exact expressions. The
advantage of this verification is that we can also the test situation % 6= 0.

As always, the method of manufactured solutions can be applied to test the
implementation of all terms in the governing equation, but the solution then has
no physical relevance in general.

Scaling. Applying scaling, as described in Section 8.1, will for the linear case
reduce the need to estimate values for seven parameters down to choosing one
value of a single dimensionless parameter

β =
%bgV

(
%
%b
− 1
)

3πdµI ,

provided I 6= 0. If the motion starts from rest, I = 0, the scaled problem
ū′ = 1− ū, ū(0) = 0, has no need for estimating physical parameters. This means
that there is a single universal solution to the problem of a falling body starting
from rest: ū(t) = 1− e−t̄. All real physical cases correspond to stretching the t̄
axis and the ū axis in this dimensionless solution. More precisely, the physical
velocity u(t) is related to the dimensionless velocity ū(t̄) through

u =
%bgV

(
%
%b
− 1
)

3πdµ ū(t/(g(%/%b − 1))) .

8.9 Decay ODEs from solving a PDE by Fourier expan-
sions

Suppose we have a partial differential equation

∂u

∂t
= α

∂2u

∂x2 + f(x, t),

with boundary conditions u(0, t) = u(L, t) = 0 and initial condition u(x, 0) =
I(x). One may express the solution as

u(x, t) =
m∑
k=1

Ak(t)eikxπ/L,

for appropriate unknown functions Ak, k = 1, . . . ,m. We use the complex
exponential eikxπ/L for easy algebra, but the physical u is taken as the real
part of any complex expression. Note that the expansion in terms of eikxπ/L is
compatible with the boundary conditions: all functions eikxπ/L vanish for x = 0
and x = L. Suppose we can express I(x) as

I(x) =
m∑
k=1

Ike
ikxπ/L .

84

Such an expansion can be computed by well-known Fourier expansion techniques,
but the details are not important here. Also, suppose we can express the given
f(x, t) as

f(x, t) =
m∑
k=1

bk(t)eikxπ/L .

Inserting the expansions for u and f in the differential equations demands that
all terms corresponding to a given k must be equal. The calculations results in
the follow system of ODEs:

A′k(t) = −αk
2π2

L2 + bk(t), k = 1, . . . ,m .

From the initial condition

u(x, 0) =
∑
k

Ak(0)eikxπ/L = I(x) =
∑
k

Ike
(ikxπ/L),

it follows that Ak(0) = Ik, k = 1, . . . ,m. We then have m equations of the form
A′k = −aAk + b, Ak(0) = Ik, for appropriate definitions of a and b. These ODE
problems independent each other such that we can solve one problem at a time.
The outline technique is a quite common approach for solving partial differential
equations.

Remark. Since ak depends on k and the stability of the Forward Euler scheme
demands ak∆t ≤ 1, we get that ∆t ≤ α−1L2π−2k−2. Usually, quite large k
values are needed to accurately represent the given functions I and f and then ∆t
needs to be very small for these large values of k. Therefore, the Crank-Nicolson
and Backward Euler schemes, which allow larger ∆t without any growth in the
solutions, are more popular choices when creating time-stepping algorithms for
partial differential equations of the type considered in this example.

9 Exercises
Exercise 10: Derive schemes for Newton’s law of cooling
Show in detail how we can apply the ideas of the Forward Euler, Backward Euler,
and Crank-Nicolson discretizations to derive explicit computational formulas for
new temperature values in Newton’s law of cooling (see Section 8.5):

dT

dt
= −k(T − Ts(t)), T (0) = T0 . (133)

Here, T is the temperature of the body, Ts(t) is the temperature of the surround-
ings, t is time, k is the heat transfer coefficient, and T0 is the initial temperature
of the body. Summarize the discretizations in a θ-rule such that you can get
the three schemes from a single formula by varying the θ parameter. Filename:
schemes_cooling.pdf.

85

Exercise 11: Implement schemes for Newton’s law of cool-
ing
The goal of this exercise is to implement the schemes from Exercise 10 and
investigate several approaches for verifying the implementation.

a) Implement the θ-rule from Exercise 10 cooling(T0, k, T_s, t_end, dt, theta=0.5),
where T0 is the initial temperature, k is the heat transfer coefficient, T_s is a
function of t for the temperature of the surroundings, t_end is the end time of
the simulation, dt is the time step, and theta corresponds to θ. The cooling
function should return the temperature as an array T of values at the mesh
points and the time mesh t.

b) In the case limt→∞ Ts(t) = C = const, explain why T (t) → C. Construct
an example where you can illustrate this property in a plot. Implement a
corresponding test function that checks the correctness of the asymptotic value
of the solution.

c) A piecewise constant surrounding temperature,

Ts(t) =
{
C0, 0 ≤ t ≤ t∗
C1, t > t∗,

corresponds to a sudden change in the environment at t = t∗. Choose C1 = 2T0,
C2 = 1

2T0, and t∗ = 4/k. Plot the solution and explain why it seems physically
reasonable.

d) Find a value of ∆t such that you can illustrate stability problems of the
Crank-Nicolson scheme in the test case from c).

e) Find an expression for the exact solution of (133). Construct a test case and
compare the numerical and exact solution in a plot. Find a value of the time
step ∆t such that the two solution curves cannot (visually) be distinguished
from each other. Many scientists will claim that such a plot provides evidence
for a correct implementation, but point out why there still may be errors in the
code. Can you introduce bugs in the cooling function and still achieve visually
coinciding curves?

Hint. The exact solution can be derived by multiplying (133) by the integrating
factor ekt.

f) Implement a test function for checking that the solution returned by the
cooling function is identical to the exact numerical solution of the problem (to
machine precision) when Ts is constant.

Hint. The exact solution of the discrete equations in the case Ts is a constant
can be found by introducing u = T−Ts to get a problem u′ = −ku, u(0) = T0−Ts.
The solution of the discrete equations is then of the form un = (T0 − Ts)An for

86

some amplification factor A. This approach can be used to derive an expression
for Tn.
Filename: cooling.py.

Exercise 12: Find time of murder from body temperature
A detective measures the temperature of a dead body to be 26.7 C at 2 pm. One
hour later the temperature is 25.8 C. The question is when death occurred.

Assume that Newton’s law of cooling (133) is an appropriate mathematical
model for the evolution of the temperature in the body. First, determine k
in (133) by formulating a Forward Euler approximation with one time steep
from time 2 am to time 3 am, where knowing the two temperatures allows for
finding k. Assume the temperature in the air to be 20 C. Thereafter, simulate
the temperature evolution from the time of murder, taken as t = 0, when
T = 37 C, until the temperature reaches 25.8 C. The corresponding time allows
for answering when death occurred. Filename: detective.py.

Exercise 13: Simulate an oscillating cooling process
The surrounding temperature Ts in Newton’s law of cooling (133) may vary in
time. Assume that the variations are periodic with period P and amplitude a
around a constant mean temperature Tm:

Ts(t) = Tm + a sin
(

2π
P
t

)
. (134)

Simulate a process with the following data: k = 20 min−1, T (0) = 5 C, Tm = 25
C, a = 2.5 C, and P = 1 h. Also experiment with P = 10 min and P = 3 h.
Plot T and Ts in the same plot. Filename: osc_cooling.py.

Exercise 14: Radioactive decay of Carbon-14
The Carbon-14 isotope, whose radioactive decay is used extensively in dating
organic material that is tens of thousands of years old, has a half-life of 5, 730
years. Determine the age of an organic material that contains 8.4 percent of its
initial amount of Carbon-14. Use a time unit of 1 year in the computations. The
uncertainty in the half time of Carbon-14 is ±40 years. What is the corresponding
uncertainty in the estimate of the age?

Hint. Use simulations with 5, 730± 40 y as input and find the corresponding
interval for the result.
Filename: carbon14.py.

87

http://en.wikipedia.org/wiki/Carbon-14

Exercise 15: Simulate stochastic radioactive decay
The purpose of this exercise is to implement the stochastic model described in
Section 8.4 and show that its mean behavior approximates the solution of the
corresponding ODE model.

The simulation goes on for a time interval [0, T] divided into Nt intervals of
length ∆t. We start with N0 atoms. In some time interval, we have N atoms
that have survived. Simulate N Bernoulli trials with probability λ∆t in this
interval by drawing N random numbers, each being 0 (survival) or 1 (decay),
where the probability of getting 1 is λ∆t. We are interested in the number
of decays, d, and the number of survived atoms in the next interval is then
N − d. The Bernoulli trials are simulated by drawing N uniformly distributed
real numbers on [0, 1] and saying that 1 corresponds to a value less than λ∆t:

Given lambda_, dt, N
import numpy as np
uniform = np.random.uniform(N)
Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_*dt is a boolean array whose true and false
values become 1 and 0, respectively, when converted to an integer array.

Repeat the simulation over [0, T] a large number of times, compute the
average value of N in each interval, and compare with the solution of the
corresponding ODE model. Filename: stochastic_decay.py.

Exercise 16: Radioactive decay of two substances
Consider two radioactive substances A and B. The nuclei in substance A decay
to form nuclei of type B with a half-life A1/2, while substance B decay to form
type A nuclei with a half-life B1/2. Letting uA and uB be the fractions of the
initial amount of material in substance A and B, respectively, the following
system of ODEs governs the evolution of uA(t) and uB(t):

1
ln 2u

′
A = uB/B1/2 − uA/A1/2, (135)

1
ln 2u

′
B = uA/A1/2 − uB/B1/2, (136)

with uA(0) = uB(0) = 1.
Make a simulation program that solves for uA(t) and uB(t). Verify the

implementation by computing analytically the limiting values of uA and uB
as t → ∞ (assume u′A, u′B → 0) and comparing these with those obtained
numerically.

Run the program for the case of A1/2 = 10 minutes and B1/2 = 50 minutes.
Use a time unit of 1 minute. Plot uA and uB versus time in the same plot.
Filename: radioactive_decay_2subst.py.

88

Exercise 17: Simulate the pressure drop in the atmosphere
We consider the models for atmospheric pressure in Section 8.6. Make a program
with three functions,

• one computing the pressure p(z) using a seven-layer model and varying L,

• one computing p(z) using a seven-layer model, but with constant tempera-
ture in each layer, and

• one computing p(z) based on the one-layer model.

How can these implementations be verified? Should ease of verification impact
how you code the functions? Compare the three models in a plot. Filename:
atmospheric_pressure.py.

Exercise 18: Make a program for vertical motion in a fluid
Implement the Stokes’ drag model (124) and the quadratic drag model (127)
from Section 8.8, using the Crank-Nicolson scheme and a geometric mean for
|v|v as explained, and assume constant fluid density. At each time level, compute
the Reynolds number Re and choose the Stokes’ drag model if Re < 1 and the
quadratic drag model otherwise.

The computation of the numerical solution should take place either in a stand-
alone function (as in Section 2.1) or in a solver class that looks up a problem
class for physical data (as in Section ??). Create a module (see Section ??) and
equip it with nose tests (see Section ??) for automatically verifying the code.

Verification tests can be based on

• the terminal velocity (see Section 8.8),

• the exact solution when the drag force is neglected (see Section 8.8),

• the method of manufactured solutions (see Section 5.5) combined with
computing convergence rates (see Section ??).

Use, e.g., a quadratic polynomial for the velocity in the method of manufactured
solutions. The expected error is O(∆t2) from the centered finite difference
approximation and the geometric mean approximation for |v|v.

A solution that is linear in t will also be an exact solution of the discrete
equations in many problems. Show that this is true for linear drag (by adding
a source term that depends on t), but not for quadratic drag because of the
geometric mean approximation. Use the method of manufactured solutions to
add a source term in the discrete equations for quadratic drag such that a linear
function of t is a solution. Add a nose test for checking that the linear function
is reproduced to machine precision in the case of both linear and quadratic drag.

Apply the software to a case where a ball rises in water. The buoyancy force
is here the driving force, but the drag will be significant and balance the other
forces after a short time. A soccer ball has radius 11 cm and mass 0.43 kg. Start

89

the motion from rest, set the density of water, %, to 1000 kg/m3, set the dynamic
viscosity, µ, to 10−3 Pa s, and use a drag coefficient for a sphere: 0.45. Plot the
velocity of the rising ball. Filename: vertical_motion.py.

Project 19: Simulate parachuting
The aim of this project is to develop a general solver for the vertical motion of a
body with quadratic air drag, verify the solver, apply the solver to a skydiver in
free fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be realized as
Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocity of the
motion. The parachute jumper is subject to the gravity force and a quadratic
drag force. Assume constant density. Add an extra source term be used for
program verification. Identify the input data to the problem.

b) Make a Python module for computing the velocity of the motion. Also equip
the module with functionality for plotting the velocity.

Hint 1. Use the Crank-Nicolson scheme with a geometric mean of |v|v in time
to linearize the equation of motion with quadratic drag.

Hint 2. You can either use functions or classes for implementation. If you
choose functions, make a function solver that takes all the input data in the
problem as arguments and that returns the velocity (as a mesh function) and
the time mesh. In case of a class-based implementation, introduce a problem
class with the physical data and a solver class with the numerical data and a
solve method that stores the velocity and the mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula for the
drag force.

c) Show that a linear function of t does not fulfill the discrete equations because
of the geometric mean approximation used for the quadratic drag term. Fit
a source term, as in the method of manufactured solutions, such that a linear
function of t is a solution of the discrete equations. Make a nose test to check
that this solution is reproduced to machine precision.

d) The expected error in this problem goes like ∆t2 because we use a centered
finite difference approximation with error O(∆t2) and a geometric mean ap-
proximation with error O(∆t2). Use the method of manufactured solutions
combined with computing convergence rate to verify the code. Make a nose test
for checking that the convergence rate is correct.

e) Compute the drag force, the gravity force, and the buoyancy force as a
function of time. Create a plot with these three forces.

90

Hint. You can either make a function forces(v, t, plot=None) that returns
the forces (as mesh functions) and t, and shows a plot on the screen and also
saves the plot to a file with name stored in plot if plot is not None, or you can
extend the solver class with computation of forces and include plotting of forces
in the visualization class.

f) Compute the velocity of a skydiver in free fall before the parachute opens.

Hint. Meade and Struthers [6] provide some data relevant to skydiving. The
mass of the human body and equipment can be set to 100 kg. A skydiver in
spread-eagle formation has a cross-section of 0.5 m2 in the horizontal plane. The
density of air decreases varies altitude, but can be taken as constant, 1 kg/m3,
for altitudes relevant to skydiving (0-4000 m). The drag coefficient for a man in
upright position can be set to 1.2. Start with a zero velocity. A free fall typically
has a terminating velocity of 45 m/s. (This value can be used to tune other
parameters.)

g) The next task is to simulate a parachute jumper during free fall and after
the parachute opens. At time tp, the parachute opens and the drag coefficient
and the cross-sectional area change dramatically. Use the program to simulate a
jump from z = 3000 m to the ground z = 0. What is the maximum acceleration,
measured in units of g, experienced by the jumper?

Hint. Following Meade and Struthers [6], one can set the cross-section area
perpendicular to the motion to 44 m2 when the parachute is open. Assume
that it takes 8 s to increase the area linearly from the original to the final value.
The drag coefficient for an open parachute can be taken as 1.8, but tuned using
the known value of the typical terminating velocity reached before landing: 5.3
m/s. One can take the drag coefficient as a piecewise constant function with
an abrupt change at tp. The parachute is typically released after tp = 60 s, but
larger values of tp can be used to make plots more illustrative.
Filename: skydiving.py.

Exercise 20: Formulate vertical motion in the atmosphere
Vertical motion of a body in the atmosphere needs to take into account a varying
air density if the range of altitudes is many kilometers. In this case, % varies with
the altitude z. The equation of motion for the body is given in Section 8.8. Let
us assume quadratic drag force (otherwise the body has to be very, very small).
A differential equation problem for the air density, based on the information for
the one-layer atmospheric model in Section 8.6, can be set up as

p′(z) = − Mg

R∗(T0 + Lz)p, (137)

% = p
M

R∗T
. (138)

91

http://en.wikipedia.org/wiki/Parachuting

To evaluate p(z) we need the altitude z. From the principle that the velocity is
the derivative of the position we have that

z′(t) = v(t), (139)

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by the For-

ward Euler and the Crank-Nicolson methods. Filename: falling_in_variable_density.pdf.

Exercise 21: Simulate vertical motion in the atmosphere
Implement the Forward Euler or the Crank-Nicolson scheme derived in Exer-
cise 20. Demonstrate the effect of air density variation on a falling human, e.g.,
the famous fall of Felix Baumgartner. The drag coefficient can be set to 1.2.

Remark. In the Crank-Nicolson scheme one must solve a 3 × 3 system of
equations at each time level, since p, %, and v are coupled, while each equation
can be stepped forward at a time with the Forward Euler scheme. Filename:
falling_in_variable_density.py.

Exercise 22: Compute y = |x| by solving an ODE
Consider the ODE problem

y′(x) =
{
−1, x < 0,
1, x ≥ 0 x ∈ (−1, 1], y(1−) = 1,

which has the solution y(x) = |x|. Using a mesh x0 = −1, x1 = 0, and
x2 = 1, calculate by hand y1 and y2 from the Forward Euler, Backward Euler,
Crank-Nicolson, and Leapfrog methods. Use all of the former three methods for
computing the y1 value to be used in the Leapfrog calculation of y2. Thereafter,
visualize how these schemes perform for a uniformly partitioned mesh with
N = 10 and N = 11 points. Filename: signum.py.

Exercise 23: Simulate growth of a fortune with random
interest rate
The goal of this exercise is to compute the value of a fortune subject to inflation
and a random interest rate. Suppose that the inflation is constant at i percent
per year and that the annual interest rate, p, changes randomly at each time
step, starting at some value p0 at t = 0. The random change is from a value pn
at t = tn to pn + ∆p with probability 0.25 and pn −∆p with probability 0.25.
No change occurs with probability 0.5. There is also no change if pn+1 exceeds
15 or becomes below 1. Use a time step of one month, p0 = i, initial fortune
scaled to 1, and simulate 1000 scenarios of length 20 years. Compute the mean
evolution of one unit of money and the corresponding standard deviation. Plot
the mean curve along with the mean plus one standard deviation and the mean

92

http://en.wikipedia.org/wiki/Felix_Baumgartner

minus one standard deviation. This will illustrate the uncertainty in the mean
curve.

Hint 1. The following code snippet computes pn+1:

import random

def new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:

p_np1 = p_n + dp
elif 0.25 <= r < 0.5:

p_np1 = p_n - dp
else:

p_np1 = p_n
return (p_np1 if 1 <= p_np1 <= 15 else p_n)

Hint 2. If ui(t) is the value of the fortune in experiment number i, i =
0, . . . , N − 1, the mean evolution of the fortune is

ū(t) = 1
N

N−1∑
i=0

ui(t),

and the standard deviation is

s(t) =

√√√√ 1
N − 1

(
−(ū(t))2 +

N−1∑
i=0

(ui(t))2

)
.

Suppose ui(t) is stored in an array u. The mean and the standard deviation
of the fortune is most efficiently computed by using two accumulation arrays,
sum_u and sum_u2, and performing sum_u += u and sum_u2 += u**2 after every
experiment. This technique avoids storing all the ui(t) time series for computing
the statistics.
Filename: random_interest.py.

Exercise 24: Simulate a population in a changing environ-
ment
We shall study a population modeled by (108) where the environment, represented
by r and f , undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death) rate at
time t = tr, because of limited nutrition or food supply:

a(t) =
{
r0, t < tr,
r0 −A, t ≥ tr,

93

This drop in population growth is compensated by a sudden net immigration at
time tf > tr:

f(t) =
{

0, t < tf ,
f0, t ≥ ta,

Start with r0 and make A > r0. Experiment with these and other parameters
to illustrate the interplay of growth and decay in such a problem. Filename:
population_drop.py.

b) Now we assume that the environmental conditions changes periodically with
time so that we may take

r(t) = r0 +A sin
(

2π
P
t

)
.

That is, the combined birth and death rate oscillates around r0 with a maximum
change of ±A repeating over a period of length P in time. Set f = 0 and
experiment with the other parameters to illustrate typical features of the solution.
Filename: population_osc.py.

Exercise 25: Simulate logistic growth
Solve the logistic ODE (109) using a Crank-Nicolson scheme where (un+ 1

2)2 is
approximated by a geometric mean:

(un+ 1
2)2 ≈ un+1un .

This trick makes the discrete equation linear in un+1. Filename: logistic_CN.py.

Exercise 26: Rederive the equation for continuous com-
pound interest
The ODE model (112) was derived under the assumption that r was constant.
Perform an alternative derivation without this assumption: 1) start with (110);
2) introduce a time step ∆t instead of m: ∆t = 1/m if t is measured in
years; 3) divide by ∆t and take the limit ∆t → 0. Simulate a case where the
inflation is at a constant level I percent per year and the interest rate oscillates:
r = −I/2 + r0 sin(2πt). Compare solutions for r0 = I, 3I/2, 2I. Filename:
interest_modeling.py.

References
[1] D. Griffiths, F. David, and D. J. Higham. Numerical Methods for Ordinary

Differential Equations: Initial Value Problems. Springer, 2010.

[2] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer, 1993.

94

[3] G. Hairer and E. Wanner. Solving Ordinary Differential Equations II.
Springer, 2010.

[4] H. P. Langtangen. A Primer on Scientific Programming With Python. Texts
in Computational Science and Engineering. Springer, fourth edition, 2014.

[5] H. P. Langtangen and L. Wang. Odespy software package. https://github.
com/hplgit/odespy.

[6] D. B. Meade and A. A. Struthers. Differential equations in the new millenium:
the parachute problem. International Journal of Engineering Education,
15(6):417–424, 1999.

[7] L. Petzold and U. M. Ascher. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations, volume 61. SIAM, 1998.

95

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy

Index
θ-rule, 13, 59

A-stable methods, 42
Adams-Bashforth scheme, 2nd-order,

61
Adams-Bashforth scheme, 3rd order, 61
adaptive time stepping, 66
algebraic equation, 9
amplification factor, 42
array arithmetics, 26
array computing, 26
averaging

arithmetic, 12
geometric, 83

backward difference, 10
Backward Euler scheme, 10
backward scheme, 1-step, 10
backward scheme, 2-step, 59
BDF2 scheme, 59

centered difference, 11
consistency, 49
continuous function norms, 26
convergence, 49
Crank-Nicolson scheme, 11
cropping images, 30

decay ODE, 5
difference equation, 9
directory, 17
discrete equation, 9
discrete function norms, 27
doc strings, 20
Dormand-Prince Runge-Kutta 4-5 method,

66

EPS plot, 30
error

amplification factor, 46
global, 46
norms, 28

explicit schemes, 59
exponential decay, 5

finite difference operator notation, 15
finite difference scheme, 9
finite differences, 8

backward, 10
centered, 11
forward, 8

folder, 17
format string syntax (Python), 21
forward difference, 8
Forward Euler scheme, 9

geometric mean, 83
grid, 6

Heun’s method, 60

implicit schemes, 59

L-stable methods, 42
lambda functions, 54
Leapfrog scheme, 60
Leapfrog scheme, filtered, 60
logistic model, 74

mesh, 6
mesh function, 7
mesh function norms, 27
method of manufactured solutions, 56
MMS (method of manufactured solu-

tions), 56
montage program, 30

norm
continuous, 26
discrete (mesh function), 27

ode45, 66
operator notation, finite differences, 15

PDF plot, 30
pdfcrop program, 31
pdfnup program, 31
pdftk program, 31
plotting curves, 22, 29

96

PNG plot, 30
population dynamics, 73
printf format, 20

radioactive decay, 75
representative (mesh function), 25
RK4, 62
Runge-Kutta, 2nd-order method, 60
Runge-Kutta, 4th-order method, 62

scalar computing, 28
scaling, 84
stability, 41, 49

Taylor-series methods (for ODEs), 61
terminal velocity, 82
theta-rule, 13, 59

viewing graphics files, 30
visualizing curves, 22, 29

weighted average, 13

97

	Finite difference methods
	A basic model for exponential decay
	The Forward Euler scheme
	The Backward Euler scheme
	The Crank-Nicolson scheme
	The unifying -rule
	Constant time step
	Compact operator notation for finite differences

	Implementation
	Making a solver function
	Verifying the implementation
	Computing the numerical error as a mesh function
	Computing the norm of the numerical error
	Plotting solutions
	Experiments with computing and plotting
	Memory-saving implementation

	Analysis of finite difference equations
	Experimental investigation of oscillatory solutions
	Exact numerical solution
	Stability
	Comparing amplification factors
	Series expansion of amplification factors
	The fraction of numerical and exact amplification factors
	The global error at a point
	Integrated errors
	Truncation error
	Consistency, stability, and convergence

	Exercises
	Model extensions
	Generalization: including a variable coefficient
	Generalization: including a source term
	Implementation of the generalized model problem
	Verifying a constant solution
	Verification via manufactured solutions
	Extension to systems of ODEs

	General first-order ODEs
	Generic form of first-order ODEs
	The -rule
	An implicit 2-step backward scheme
	Leapfrog schemes
	The 2nd-order Runge-Kutta method
	A 2nd-order Taylor-series method
	The 2nd- and 3rd-order Adams-Bashforth schemes
	The 4th-order Runge-Kutta method
	The Odespy software
	Example: Runge-Kutta methods
	Example: Adaptive Runge-Kutta methods

	Exercises
	Applications of exponential decay models
	Scaling
	Evolution of a population
	Compound interest and inflation
	Radioactive Decay
	Newton's law of cooling
	Decay of atmospheric pressure with altitude
	Compaction of sediments
	Vertical motion of a body in a viscous fluid
	Decay ODEs from solving a PDE by Fourier expansions

	Exercises

