
Study guide: Intro to Computing with Finite
Di�erence Methods

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Oct 5, 2014

INF5620 in a nutshell

Numerical methods for partial di�erential equations (PDEs)

How do we solve a PDE in practice and produce numbers?

How do we trust the answer?

Approach: simplify, understand, generalize

After the course

You see a PDE and can't wait to program a method and visualize a
solution! Somebody asks if the solution is right and you can give a
convincing answer.

The new o�cial six-point course description
After having completed INF5620 you

can derive methods and implement them to solve frequently
arising partial di�erential equations (PDEs) from physics and
mechanics.

have a good understanding of �nite di�erence and �nite
element methods and how they are applied in linear and
nonlinear PDE problems.

can identify numerical artifacts and perform mathematical
analysis to understand and cure non-physical e�ects.

can apply sophisticated programming techniques in Python,
combined with Cython, C, C++, and Fortran code, to create
modern, �exible simulation programs.

can construct veri�cation tests and automate them.

have experience with project hosting sites (GitHub), version
control systems (Git), report writing (LATEX), and Python
scripting for performing reproducible computational science.

More speci�c contents: �nite di�erence methods

ODEs

the wave equation utt = uxx in 1D, 2D, 3D

the di�usion equation ut = uxx in 1D, 2D, 3D

write your own software from scratch

understand how the methods work and why they fail

More speci�c contents: �nite element methods

stationary di�usion equations uxx = f in 1D

time-dependent di�usion and wave equations in 1D

PDEs in 2D and 3D by use of the FEniCS software

perform hand-calculations, write your own software (1D)

understand how the methods work and why they fail

More speci�c contents: nonlinear and advanced problems

Nonlinear PDEs

Newton and Picard iteration methods, �nite di�erences and

elements

More advanced PDEs for �uid �ow and elasticity

Parallel computing

Philosophy: simplify, understand, generalize

Start with simpli�ed ODE/PDE problems

Learn to reason about the discretization

Learn to implement, verify, and experiment

Understand the method, program, and results

Generalize the problem, method, and program

This is the power of applied mathematics!

The exam

Oral exam

6 problems (topics) are announced two weeks before the exam

Work out a 20 min presentations (talks) for each problem

At the exam: throw a die to pick your problem to be presented

Aids: plots, computer programs

Why? Very e�ective way of learning

Sure? Excellent results over 15 years

When? Late december

Required software

Our software platform: Python (sometimes combined with
Cython, Fortran, C, C++)

Important Python packages: numpy, scipy, matplotlib,
sympy, fenics, scitools, ...

Suggested installation: Run Ubuntu in a virtual machine

Alternative: run a Vagrant machine

Assumed/ideal background

INF1100: Python programming, solution of ODEs

Some experience with �nite di�erence methods

Some analytical and numerical knowledge of PDEs

Much experience with calculus and linear algebra

Much experience with programming of mathematical problems

Experience with mathematical modeling with PDEs (from
physics, mechanics, geophysics, or ...)

Start-up example for the course

What if you don't have this ideal background?

Students come to this course with very di�erent backgrounds

First task: summarize assumed background knowledge by
going through a simple example

Also in this example:

Some fundamental material on software implementation and

software testing

Material on analyzing numerical methods to understand why

they can fail

Applications to real-world problems

Start-up example

ODE problem

u′ = −au, u(0) = I , t ∈ (0,T],

where a > 0 is a constant.

Everything we do is motivated by what we need as building blocks
for solving PDEs!

What to learn in the start-up example; standard topics

How to think when constructing �nite di�erence methods,
with special focus on the Forward Euler, Backward Euler, and
Crank-Nicolson (midpoint) schemes

How to formulate a computational algorithm and translate it
into Python code

How to make curve plots of the solutions

How to compute numerical errors

How to compute convergence rates

What to learn in the start-up example; programming topics

How to verify an implementation and automate veri�cation
through nose tests in Python

How to structure code in terms of functions, classes, and
modules

How to work with Python concepts such as arrays, lists,
dictionaries, lambda functions, functions in functions
(closures), doctests, unit tests, command-line interfaces,
graphical user interfaces

How to perform array computing and understand the
di�erence from scalar computing

How to conduct and automate large-scale numerical
experiments

How to generate scienti�c reports

What to learn in the start-up example; mathematical
analysis

How to uncover numerical artifacts in the computed solution

How to analyze the numerical schemes mathematically to
understand why artifacts occur

How to derive mathematical expressions for various measures
of the error in numerical methods, frequently by using the
sympy software for symbolic computation

Introduce concepts such as �nite di�erence operators, mesh
(grid), mesh functions, stability, truncation error, consistency,
and convergence

What to learn in the start-up example; generalizations

Generalize the example to u′(t) = −a(t)u(t) + b(t)

Present additional methods for the general nonlinear ODE
u′ = f (u, t), which is either a scalar ODE or a system of ODEs

How to access professional packages for solving ODEs

How our model equations like u′ = −au arises in a wide range
of phenomena in physics, biology, and �nance

Finite di�erence methods

The �nite di�erence method is the simplest method for solving
di�erential equations

Fast to learn, derive, and implement

A very useful tool to know, even if you aim at using the �nite
element or the �nite volume method

Topics in the �rst intro to the �nite di�erence method

Contents

How to think about �nite di�erence discretization

Key concepts:

mesh

mesh function

�nite di�erence approximations

The Forward Euler, Backward Euler, and Crank-Nicolson
methods

Finite di�erence operator notation

How to derive an algorithm and implement it in Python

How to test the implementation

A basic model for exponential decay

The world's simplest (?) ODE:

u′(t) = −au(t), u(0) = I , t ∈ (0,T]

Observation

We can learn a lot about numerical methods, computer
implementation, program testing, and real applications of these
tools by using this very simple ODE as example. The teaching
principle is to keep the math as simple as possible while learning
computer tools.

The ODE model has a range of applications in many �elds

Growth and decay of populations (cells, animals, human)

Growth and decay of a fortune

Radioactive decay

Cooling/heating of an object

Pressure variation in the atmosphere

Vertical motion of a body in water/air

Time-discretization of di�usion PDEs by Fourier techniques

See the text for details.

The ODE problem has a continuous and discrete version

Continuous problem.

u′ = −au, t ∈ (0,T], u(0) = I (1)

(varies with a continuous t)

Discrete problem. Numerical methods applied to the continuous
problem turns it into a discrete problem

un+1 = constun, n = 0, 1, . . .Nt − 1, un = I (2)

(varies with discrete mesh points tn)

The steps in the �nite di�erence method

Solving a di�erential equation by a �nite di�erence method consists
of four steps:

1 discretizing the domain,

2 ful�lling the equation at discrete time points,

3 replacing derivatives by �nite di�erences,

4 formulating a recursive algorithm.

Step 1: Discretizing the domain

The time domain [0,T] is represented by a mesh: a �nite number
of Nt + 1 points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt
= T

We seek the solution u at the mesh points: u(tn),
n = 1, 2, . . . ,Nt .

Note: u0 is known as I .

Notational short-form for the numerical approximation to
u(tn): un

In the di�erential equation: u is the exact solution

In the numerical method and implementation: un is the
numerical approximation, ue(t) is the exact solution

Step 1: Discretizing the domain

un is a mesh function, de�ned at the mesh points tn, n = 0, . . . ,Nt

only.

What about a mesh function between the mesh points?

Can extend the mesh function to yield values between mesh points
by linear interpolation:

u(t) ≈ un +
un+1 − un

tn+1 − tn
(t − tn) (3)

Step 2: Ful�lling the equation at discrete time points

The ODE holds for all t ∈ (0,T] (in�nite no of points)

Idea: let the ODE be valid at the mesh points only (�nite no
of points)

u′(tn) = −au(tn), n = 1, . . . ,Nt (4)

Step 3: Replacing derivatives by �nite di�erences

Now it is time for the �nite di�erence approximations of derivatives:

u′(tn) ≈ un+1 − un

tn+1 − tn
(5)

forward

u(t)

tntn−1 tn+1

Step 3: Replacing derivatives by �nite di�erences

Inserting the �nite di�erence approximation in

u′(tn) = −au(tn)

gives

un+1 − un

tn+1 − tn
= −aun, n = 0, 1, . . . ,Nt − 1 (6)

(Known as discrete equation, or discrete problem, or �nite
di�erence method/scheme)

Step 4: Formulating a recursive algorithm

How can we actually compute the un values?

given u0 = I

compute u1 from u0

compute u2 from u1

compute u3 from u2 (and so forth)

In general: we have un and seek un+1

The Forward Euler scheme

Solve wrt un+1 to get the computational formula:

un+1 = un − a(tn+1 − tn)un (7)

Let us apply the scheme by hand

Assume constant time spacing: ∆t = tn+1 − tn = const

u0 = I ,

u1 = u0 − a∆tu0 = I (1− a∆t),

u2 = I (1− a∆t)2,

u3 = I (1− a∆t)3,

...

uNt = I (1− a∆t)Nt

Ooops - we can �nd the numerical solution by hand (in this simple
example)! No need for a computer (yet)...

A backward di�erence

Here is another �nite di�erence approximation to the derivative
(backward di�erence):

u′(tn) ≈ un − un−1

tn − tn−1
(8)

backward

u(t)

tntn−1 tn+1

The Backward Euler scheme

Inserting the �nite di�erence approximation in u′(tn) = −au(tn)
yields the Backward Euler (BE) scheme:

un − un−1

tn − tn−1
= −aun (9)

Solve with respect to the unknown un+1:

un+1 =
1

1 + a(tn+1 − tn)
un (10)

A centered di�erence

Centered di�erences are better approximations than forward or
backward di�erences.

centered

u(t)

tn+1
2

tn tn+1

The Crank-Nicolson scheme; ideas

Idea 1: let the ODE hold at t
n+ 1

2

u′(t
n+ 1

2

) = −au(t
n+ 1

2

)

Idea 2: approximate u′(t
n+ 1

2

by a centered di�erence

u′(t
n+ 1

2

) ≈ un+1 − un

tn+1 − tn
(11)

Problem: u(t
n+ 1

2

) is not de�ned, only un = u(tn) and

un+1 = u(tn+1)

Solution:

u(t
n+ 1

2

) ≈ 1

2
(un + un+1)

The Crank-Nicolson scheme; result

Result:

un+1 − un

tn+1 − tn
= −a1

2
(un + un+1) (12)

Solve wrt to un+1:

un+1 =
1− 1

2a(tn+1 − tn)

1 + 1
2a(tn+1 − tn)

un (13)

This is a Crank-Nicolson (CN) scheme or a midpoint or centered
scheme.

The unifying θ-rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes
can be formulated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) (14)

θ = 0: Forward Euler

θ = 1: Backward Euler

θ = 1/2: Crank-Nicolson

We may alternatively choose any θ ∈ [0, 1].

un is known, solve for un+1:

un+1 =
1− (1− θ)a(tn+1 − tn)

1 + θa(tn+1 − tn)
(15)

Constant time step

Very common assumption (not important, but exclusively used for
simplicity hereafter): constant time step tn+1 − tn ≡ ∆t

Summary of schemes for constant time step

un+1 = (1− a∆t)un Forward Euler (16)

un+1 =
1

1 + a∆t
un Backward Euler (17)

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un Crank-Nicolson (18)

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un The θ − rule (19)

Test the understanding!

Derive Forward Euler, Backward Euler, and Crank-Nicolson schemes
for Newton's law of cooling:

T ′ = −k(T − Ts), T (0) = T0, t ∈ (0, tend]

Physical quantities:

T (t): temperature of an object at time t

k : parameter expressing heat loss to the surroundings

Ts : temperature of the surroundings

T0: initial temperature

Compact operator notation for �nite di�erences

Finite di�erence formulas can be tedious to write and
read/understand

Handy tool: �nite di�erence operator notation

Advantage: communicates the nature of the di�erence in a
compact way

[D−t u = −au]n (20)

Speci�c notation for di�erence operators

Forward di�erence:

[D+
t u]n =

un+1 − un

∆t
≈ d

dt
u(tn) (21)

Centered di�erence:

[Dtu]n =
un+ 1

2 − un−
1

2

∆t
≈ d

dt
u(tn), (22)

Backward di�erence:

[D−t u]n =
un − un−1

∆t
≈ d

dt
u(tn) (23)

The Backward Euler scheme with operator notation

[D−t u]n = −aun

Common to put the whole equation inside square brackets:

[D−t u = −au]n (24)

The Forward Euler scheme with operator notation

[D+
t u = −au]n (25)

The Crank-Nicolson scheme with operator notation

Introduce an averaging operator:

[ut]n =
1

2
(un−

1

2 + un+ 1

2) ≈ u(tn) (26)

The Crank-Nicolson scheme can then be written as

[Dtu = −aut]n+ 1

2 (27)

Test: use the de�nitions and write out the above formula to see
that it really is the Crank-Nicolson scheme!

Implementation

Model:
u′(t) = −au(t), t ∈ (0,T], u(0) = I

Numerical method:

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un

for θ ∈ [0, 1]. Note

θ = 0 gives Forward Euler

θ = 1 gives Backward Euler

θ = 1/2 gives Crank-Nicolson

Requirements of a program

Compute the numerical solution un, n = 1, 2, . . . ,Nt

Display the numerical and exact solution ue(t) = e−at

Bring evidence to a correct implementation (veri�cation)

Compare the numerical and the exact solution in a plot

computes the error ue(tn)− un

computes the convergence rate of the numerical scheme

reads its input data from the command line

Tools to learn

Basic Python programming

Array computing with numpy

Plotting with matplotlib.pyplot and scitools

File writing and reading

Notice

All programs are in the directory src/decay.

Why implement in Python?

Python has a very clean, readable syntax (often known as
"executable pseudo-code").

Python code is very similar to MATLAB code (and MATLAB
has a particularly widespread use for scienti�c computing).

Python is a full-�edged, very powerful programming language.

Python is similar to, but much simpler to work with and
results in more reliable code than C++.

Why implement in Python?

Python has a rich set of modules for scienti�c computing, and
its popularity in scienti�c computing is rapidly growing.

Python was made for being combined with compiled languages
(C, C++, Fortran) to reuse existing numerical software and to
reach high computational performance of new
implementations.

Python has extensive support for administrative task needed
when doing large-scale computational investigations.

Python has extensive support for graphics (visualization, user
interfaces, web applications).

FEniCS, a very powerful tool for solving PDEs by the �nite
element method, is most human-e�cient to operate from
Python.

Algorithm

Store un, n = 0, 1, . . . ,Nt in an array u.

Algorithm:
1 initialize u

0

2 for t = tn, n = 1, 2, . . . ,Nt : compute un using the θ-rule
formula

Translation to Python function

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Note about the for loop: range(0, Nt, s) generates all integers
from 0 to Nt in steps of s (default 1), but not including Nt (!).

Sample call:

u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division

Python applies integer division: 1/2 is 0, while 1./2 or 1.0/2 or
1/2. or 1/2.0 or 1.0/2.0 all give 0.5.

A safer solver function (dt = float(dt) - guarantee �oat):

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Doc strings

First string after the function heading

Used for documenting the function

Automatic documentation tools can make fancy manuals for
you

Can be used for automatic testing

def solver(I, a, T, dt, theta):
"""
Solve

u'(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Formatting of numbers

Can control formatting of reals and integers through the printf
format:

print 't=%6.3f u=%g' % (t[i], u[i])

Or the alternative format string syntax:

print 't={t:6.3f} u={u:g}'.format(t=t[i], u=u[i])

Running the program

How to run the program decay_v1.py:

Terminal> python decay_v1.py

Can also run it as "normal" Unix programs: ./decay_v1.py if the
�rst line is

`#!/usr/bin/env python`

Then

Terminal> chmod a+rx decay_v1.py
Terminal> ./decay_v1.py

Plotting the solution

Basic syntax:

from matplotlib.pyplot import *

plot(t, u)
show()

Can (and should!) add labels on axes, title, legends.

Comparing with the exact solution

Python function for the exact solution ue(t) = Ie−at :

def exact_solution(t, I, a):
return I*exp(-a*t)

Quick plotting:

u_e = exact_solution(t, I, a)
plot(t, u, t, u_e)

Problem: ue(t) applies the same mesh as un and looks as a
piecewise linear function.

Remedy: Introduce a very �ne mesh for ue.

t_e = linspace(0, T, 1001) # fine mesh
u_e = exact_solution(t_e, I, a)

plot(t_e, u_e, 'b-', # blue line for u_e
t, u, 'r--o') # red dashes w/circles

Add legends, axes labels, title, and wrap in a function
from matplotlib.pyplot import *

def plot_numerical_and_exact(theta, I, a, T, dt):
"""Compare the numerical and exact solution in a plot."""
u, t = solver(I=I, a=a, T=T, dt=dt, theta=theta)

t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)

plot(t, u, 'r--o', # red dashes w/circles
t_e, u_e, 'b-') # blue line for exact sol.

legend(['numerical', 'exact'])
xlabel('t')
ylabel('u')
title('theta=%g, dt=%g' % (theta, dt))
savefig('plot_%s_%g.png' % (theta, dt))

Complete code in decay_v2.py

0 1 2 3 4 5 6 7 8
t

0.0

0.2

0.4

0.6

0.8

1.0

u

theta=1, dt=0.8

numerical
exact

Plotting with SciTools

SciTools provides a uni�ed plotting interface (Easyviz) to many
di�erent plotting packages: Matplotlib, Gnuplot, Grace, VTK,
OpenDX, ...

Can use Matplotlib (MATLAB-like) syntax, or a more compact
plot function syntax:

from scitools.std import *

plot(t, u, 'r--o', # red dashes w/circles
t_e, u_e, 'b-', # blue line for exact sol.
legend=['numerical', 'exact'],
xlabel='t',
ylabel='u',
title='theta=%g, dt=%g' % (theta, dt),
savefig='%s_%g.png' % (theta2name[theta], dt),
show=True)

Change backend (plotting engine, Matplotlib by default):

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

Verifying the implementation

Veri�cation = bring evidence that the program works

Find suitable test problems

Make function for each test problem

Later: put the veri�cation tests in a professional testing
framework

Simplest method: run a few algorithmic steps by hand

Use a calculator (I = 0.1, θ = 0.8, ∆t = 0.8):

A ≡ 1− (1− θ)a∆t

1 + θa∆t
= 0.298245614035

u1 = AI = 0.0298245614035,

u2 = Au1 = 0.00889504462912,

u3 = Au2 = 0.00265290804728

See the function verify_three_steps in decay_verf1.py.

Comparison with an exact discrete solution

Best veri�cation

Compare computed numerical solution with a closed-form exact
discrete solution (if possible).

De�ne

A =
1− (1− θ)a∆t

1 + θa∆t

Repeated use of the θ-rule:

u0 = I ,

u1 = Au0 = AI

un = Anun−1 = AnI

Making a test based on an exact discrete solution

The exact discrete solution is

un = IAn (28)

Question

Understand what n in un and in An means!

Test if

max
n
|un − ue(tn)| < ε ∼ 10−15

Implementation in decay_verf2.py.

Test the understanding!

Make a program for solving Newton's law of cooling

T ′ = −k(T − Ts), T (0) = T0, t ∈ (0, tend]

with the Forward Euler, Backward Euler, and Crank-Nicolson
schemes (or a θ scheme). Verify the implementation.

Computing the numerical error as a mesh function

Task: compute the numerical error en = ue(tn)− un

Exact solution: ue(t) = Ie−at , implemented as

def exact_solution(t, I, a):
return I*exp(-a*t)

Compute en by

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e = u_e - u

Array arithmetics - we compute on entire arrays!

exact_solution(t, I, a) works with t as array

Must have exp from numpy (not math)

e = u_e - u: array subtraction

Array arithmetics gives shorter and much faster code

Computing the norm of the error

en is a mesh function

Usually we want one number for the error

Use a norm of en

Norms of a function f (t):

||f ||L2 =

(∫
T

0

f (t)2dt

)1/2

(29)

||f ||L1 =

∫
T

0

|f (t)|dt (30)

||f ||L∞ = max
t∈[0,T]

|f (t)| (31)

Norms of mesh functions

Problem: f n = f (tn) is a mesh function and hence not de�ned
for all t. How to integrate f n?

Idea: Apply a numerical integration rule, using only the mesh
points of the mesh function.

The Trapezoidal rule:

||f n|| =

(
∆t

(
1

2
(f 0)2 +

1

2
(f Nt)2 +

Nt−1∑

n=1

(f n)2

))1/2

Common simpli�cation yields the L2 norm of a mesh function:

||f n||`2 =

(
∆t

Nt∑

n=0

(f n)2

)1/2

Implementation of the norm of the error

E = ||en||`2 =

√√√√∆t

Nt∑

n=0

(en)2

Python w/array arithmetics:

e = exact_solution(t) - u
E = sqrt(dt*sum(e**2))

Comment on array vs scalar computation
Scalar computing of E = sqrt(dt*sum(e**2)):

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = exact_solution(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

Obviously, scalar computing

takes more code
is less readable
runs much slower

Rule

Compute on entire arrays (when possible)!

Memory-saving implementation

Note 1: we store the entire array u, i.e., un for n = 0, 1, . . . ,Nt

Note 2: the formula for un+1 needs un only, not un−1, un−2, ...

No need to store more than un+1 and un

Extremely important when solving PDEs

No practical importance here (much memory available)

But let's illustrate how to do save memory!

Idea 1: store un+1 in u, un in u_1 (float)

Idea 2: store u in a �le, read �le later for plotting

Memory-saving solver function

def solver_memsave(I, a, T, dt, theta, filename='sol.dat'):
"""
Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, 'w')
u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write('%.16E %.16E\n' % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write('%.16E %.16E\n' % (t, u))

outfile.close()
return u, t

Reading computed data from �le

def read_file(filename='sol.dat'):
infile = open(filename, 'r')
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print 'Found more than two numbers on a line!', words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

Simpler code with numpy functionality for reading/writing tabular
data:

def read_file_numpy(filename='sol.dat'):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

Similar function np.savetxt, but then we need all un and tn

values in a two-dimensional array (which we try to prevent now!).

Usage of memory-saving code

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = 'u.dat'
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = exact_solution(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))
if makeplot:

plt.figure()
...

Complete program: decay_memsave.py.

Analysis of �nite di�erence equations

Model:
u′(t) = −au(t), u(0) = I (32)

Method:

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un (33)

Problem setting

How good is this method? Is it safe to use it?

Encouraging numerical solutions
I = 1, a = 2, θ = 1, 0.5, 0, ∆t = 1.25, 0.75, 0.5, 0.1.

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=1, dt=0.1

numerical
exact

Discouraging numerical solutions; Crank-Nicolson

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0
u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

Discouraging numerical solutions; Forward Euler

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

Summary of observations

The characteristics of the displayed curves can be summarized as
follows:

The Backward Euler scheme always gives a monotone solution,
lying above the exact curve.

The Crank-Nicolson scheme gives the most accurate results,
but for ∆t = 1.25 the solution oscillates.

The Forward Euler scheme gives a growing, oscillating solution
for ∆t = 1.25; a decaying, oscillating solution for ∆t = 0.75;
a strange solution un = 0 for n ≥ 1 when ∆t = 0.5; and a
solution seemingly as accurate as the one by the Backward
Euler scheme for ∆t = 0.1, but the curve lies below the exact
solution.

Problem setting

Goal

We ask the question

Under what circumstances, i.e., values of the input data I , a,
and ∆t will the Forward Euler and Crank-Nicolson schemes
result in undesired oscillatory solutions?

Techniques of investigation:

Numerical experiments

Mathematical analysis

Another question to be raised is

How does ∆t impact the error in the numerical solution?

Experimental investigation of oscillatory solutions
The solution is oscillatory if

un > un−1

Seems that a∆t < 1 for FE and 2 for CN.

Exact numerical solution

Starting with u0 = I , the simple recursion (33) can be applied
repeatedly n times, with the result that

un = IAn, A =
1− (1− θ)a∆t

1 + θa∆t
(34)

Such an exact discrete solution is unusual, but very handy for
analysis.

Stability

Since un ∼ An,

A < 0 gives a factor (−1)n and oscillatory solutions

|A| > 1 gives growing solutions

Recall: the exact solution is monotone and decaying

If these qualitative properties are not met, we say that the
numerical solution is unstable

Computation of stability in this problem

A < 0 if

1− (1− θ)a∆t

1 + θa∆t
< 0

To avoid oscillatory solutions we must have A > 0 and

∆t <
1

(1− θ)a
(35)

Always ful�lled for Backward Euler

∆t ≤ 1/a for Forward Euler

∆t ≤ 2/a for Crank-Nicolson

Computation of stability in this problem

|A| ≤ 1 means −1 ≤ A ≤ 1

−1 ≤ 1− (1− θ)a∆t

1 + θa∆t
≤ 1 (36)

−1 is the critical limit:

∆t ≤ 2

(1− 2θ)a
, θ <

1

2

∆t ≥ 2

(1− 2θ)a
, θ >

1

2

Always ful�lled for Backward Euler and Crank-Nicolson

∆t ≤ 2/a for Forward Euler

Explanation of problems with Forward Euler

0 1 2 3 4 5
t

4

2

0

2

4

6

u

Method: theta-rule, theta=0, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.5

0.0

0.5

1.0

u

Method: theta-rule, theta=0, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0, dt=0.1

numerical
exact

a∆t = 2 · 1.25 = 2.5 and A = −1.5: oscillations and growth
a∆t = 2 · 0.75 = 1.5 and A = −0.5: oscillations and decay
∆t = 0.5 and A = 0: un = 0 for n > 0
Smaller Deltat: qualitatively correct solution

Explanation of problems with Crank-Nicolson

0 1 2 3 4 5
t

0.2

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=1.25

numerical
exact

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.75

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.5

numerical
exact

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

u

Method: theta-rule, theta=0.5, dt=0.1

numerical
exact

∆t = 1.25 and A = −0.25: oscillatory solution
Never any growing solution

Summary of stability

1 Forward Euler is conditionally stable

∆t < 2/a for avoiding growth

∆t ≤ 1/a for avoiding oscillations

2 The Crank-Nicolson is unconditionally stable wrt growth and
conditionally stable wrt oscillations

∆t < 2/a for avoiding oscillations

3 Backward Euler is unconditionally stable

Comparing ampli�cation factors

un+1 is an ampli�cation A of un:

un+1 = Aun, A =
1− (1− θ)a∆t

1 + θa∆t

The exact solution is also an ampli�cation:

u(tn+1) = Aeu(tn), Ae = e−a∆t

A possible measure of accuracy: Ae − A

Plot of ampli�cation factors

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3

A

a*dt

Amplification factors

exact
FE
BE
CN

Series expansion of ampli�cation factors

To investigate Ae − A mathematically, we can Taylor expand the
expression, using p = a∆t as variable.

>>> from sympy import *
>>> # Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

>>> theta = Symbol('theta')
>>> A = (1-(1-theta)*p)/(1+theta*p)
>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> half = Rational(1,2) # exact fraction 1/2
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

Error in ampli�cation factors

Focus: the error measure A− Ae as function of ∆t (recall that
p = a∆t):

A− Ae =

{
O(∆t2), Forward and Backward Euler,
O(∆t3), Crank-Nicolson

(37)

The fraction of numerical and exact ampli�cation factors

Focus: the error measure 1− A/Ae as function of p = a∆t:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

Same leading-order terms as for the error measure A− Ae.

The true/global error at a point

The error in A re�ects the local error when going from one
time step to the next

What is the global (true) error at tn?
en = ue(tn)− un = Ie−atn − IAn

Taylor series expansions of en simplify the expression

Computing the global error at a point

>>> n = Symbol('n')
>>> u_e = exp(-p*n) # I=1
>>> u_n = A**n # I=1
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

Substitute n by t/∆t:

Forward and Backward Euler: leading order term 1
2 ta

2∆t

Crank-Nicolson: leading order term 1
12 ta

3∆t2

Convergence

The numerical scheme is convergent if the global error en → 0 as
∆t → 0. If the error has a leading order term ∆tr , the convergence
rate is of order r .

Integrated errors
Focus: norm of the numerical error

||en||`2 =

√√√√∆t

Nt∑

n=0

(ue(tn)− un)2

Forward and Backward Euler:

||en||`2 =
1

4

√
T 3

3
a2∆t

Crank-Nicolson:

||en||`2 =
1

12

√
T 3

3
a3∆t2

Summary of errors

Analysis of both the pointwise and the time-integrated true errors:

1st order for Forward and Backward Euler

2nd order for Crank-Nicolson

Truncation error

How good is the discrete equation?

Possible answer: see how well ue �ts the discrete equation

[Dtu = −au]n

i.e.,

un+1 − un

∆t
= −aun

Insert ue (which does not in general ful�ll this equation):

ue(tn+1)− ue(tn)

∆t
+ aue(tn) = Rn 6= 0 (38)

Computation of the truncation error

The residual Rn is the truncation error.

How does Rn vary with ∆t?

Tool: Taylor expand ue around the point where the ODE is sampled
(here tn)

ue(tn+1) = ue(tn) + u′
e
(tn)∆t +

1

2
u′′
e

(tn)∆t2 + · · ·

Inserting this Taylor series in (38) gives

Rn = u′
e
(tn) +

1

2
u′′
e

(tn)∆t + . . .+ aue(tn)

Now, ue solves the ODE u′
e

= −aue, and then

Rn ≈ 1

2
u′′
e

(tn)∆t

This is a mathematical expression for the truncation error.

The truncation error for other schemes

Backward Euler:

Rn ≈ −1
2
u′′
e

(tn)∆t

Crank-Nicolson:

Rn+ 1

2 ≈ 1

24
u′′′
e

(t
n+ 1

2

)∆t2

Consistency, stability, and convergence

Truncation error measures the residual in the di�erence
equations. The scheme is consistent if the truncation error
goes to 0 as ∆t → 0. Importance: the di�erence equations
approaches the di�erential equation as ∆t → 0.

Stability means that the numerical solution exhibits the same
qualitative properties as the exact solution. Here: monotone,
decaying function.

Convergence implies that the true (global) error
en = ue(tn)− un → 0 as ∆t → 0. This is really what we want!

The Lax equivalence theorem for linear di�erential equations:
consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to
establish than convergence.)

Extension to a variable coe�cient; Forward and Backward
Euler

u′(t) = −a(t)u(t), t ∈ (0,T], u(0) = I (39)

The Forward Euler scheme:

un+1 − un

∆t
= −a(tn)un (40)

The Backward Euler scheme:

un − un−1

∆t
= −a(tn)un (41)

Extension to a variable coe�cient; Crank-Nicolson

Eevaluting a(t
n+ 1

2

) and using an average for u:

un+1 − un

∆t
= −a(t

n+ 1

2

)
1

2
(un + un+1) (42)

Using an average for a and u:

un+1 − un

∆t
= −1

2
(a(tn)un + a(tn+1)un+1) (43)

Extension to a variable coe�cient; θ-rule

The θ-rule uni�es the three mentioned schemes,

un+1 − un

∆t
= −a((1− θ)tn + θtn+1)((1− θ)un + θun+1) (44)

or,
un+1 − un

∆t
= −(1− θ)a(tn)un − θa(tn+1)un+1 (45)

Extension to a variable coe�cient; operator notation

[D+
t u = −au]n,

[D−t u = −au]n,

[Dtu = −aut]n+ 1

2 ,

[Dtu = −aut]n+ 1

2

Extension to a source term

u′(t) = −a(t)u(t) + b(t), t ∈ (0,T], u(0) = I (46)

[D+
t u = −au + b]n,

[D−t u = −au + b]n,

[Dtu = −aut + b]n+ 1

2 ,

[Dtu = −au + b
t
]n+ 1

2

Implementation of the generalized model problem

un+1 = ((1−∆t(1−θ)an)un+∆t(θbn+1+(1−θ)bn))(1+∆tθan+1)−1

(47)

Implementation where a(t) and b(t) are given as Python functions
(see �le decay_vc.py):

def solver(I, a, b, T, dt, theta):
"""
Solve u'=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

Implementations of variable coe�cients; functions

Plain functions:

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Implementations of variable coe�cients; classes

Better implementation: class with the parameters a0, tp, and k as
attributes and a special method __call__ for evaluating a(t):

class A:
def __init__(self, a0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

Implementations of variable coe�cients; lambda function

Quick writing: a one-liner lambda function

a = lambda t: a_0 if t < tp else k*a_0

In general,

f = lambda arg1, arg2, ...: expressin

is equivalent to

def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls:

u, t = solver(1, lambda t: 1, lambda t: 1, T, dt, theta)

for a problem u′ = −u + 1, u(0) = 1.

A lambda function can appear anywhere where a variable can
appear.

Veri�cation via trivial solutions

Start debugging of a new code with trying a problem where
u = const 6= 0.

Choose u = C (a constant). Choose any a(t) and set
b = a(t)C and I = C .

"All" numerical methods will reproduce u =const exactly
(machine precision).

Often u = C eases debugging.

In this example: any error in the formula for un+1 make u 6= C !

Veri�cation via trivial solutions; test function

def test_constant_solution():
"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
tol = 1E-14
assert difference < tol

Veri�cation via manufactured solutions

Choose any formula for u(t).

Fit I , a(t), and b(t) in u′ = −au + b, u(0) = I , to make the
chosen formula a solution of the ODE problem.

Then we can always have an analytical solution (!).

Ideal for veri�cation: testing convergence rates.

Called the method of manufactured solutions (MMS)

Special case: u linear in t, because all sound numerical
methods will reproduce a linear u exactly (machine precision).

u(t) = ct + d . u(0) = 0 means d = I .

ODE implies c = −a(t)u + b(t).

Choose a(t) and c , and set b(t) = c + a(t)(ct + I).

Any error in the formula for un+1 makes u 6= ct + I !

Linear manufactured solution

un = ctn + I ful�lls the discrete equations!

First,

[D+
t t]n =

tn+1 − tn
∆t

= 1, (48)

[D−t t]n =
tn − tn−1

∆t
= 1, (49)

[Dtt]n =
t
n+ 1

2

− t
n− 1

2

∆t
=

(n + 1
2)∆t − (n − 1

2)∆t

∆t
= 1 (50)

Forward Euler:

[D+u = −au + b]n

an = a(tn), bn = c + a(tn)(ctn + I), and un = ctn + I results in

c = −a(tn)(ctn + I) + c + a(tn)(ctn + I) = c

Test function for linear manufactured solution

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*exact_solution(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
print difference
tol = 1E-14 # depends on c!
assert difference < tol

Extension to systems of ODEs

Sample system:

u′ = au + bv (51)

v ′ = cu + dv (52)

The Forward Euler method:

un+1 = un + ∆t(aun + bvn) (53)

vn+1 = un + ∆t(cun + dvn) (54)

The Backward Euler method gives a system of algebraic
equations

The Backward Euler scheme:

un+1 = un + ∆t(aun+1 + bvn+1) (55)

vn+1 = vn + ∆t(cun+1 + dvn+1) (56)

which is a 2× 2 linear system:

(1−∆ta)un+1 + bvn+1 = un (57)

cun+1 + (1−∆td)vn+1 = vn (58)

Crank-Nicolson also gives a 2× 2 linear system.

Generic form

The standard form for ODEs:

u′ = f (u, t), u(0) = I (59)

u and f : scalar or vector.

Vectors in case of ODE systems:

u(t) = (u(0)(t), u(1)(t), . . . , u(m−1)(t))

f (u, t) = (f (0)(u(0), . . . , u(m−1))

f (1)(u(0), . . . , u(m−1)),

...

f (m−1)(u(0)(t), . . . , u(m−1)(t)))

The θ-rule

un+1 − un

∆t
= θf (un+1, tn+1) + (1− θ)f (un, tn) (60)

Bringing the unknown un+1 to the left-hand side and the known
terms on the right-hand side gives

un+1 −∆tθf (un+1, tn+1) = un + ∆t(1− θ)f (un, tn) (61)

This is a nonlinear equation in un+1 (unless f is linear in u)!

Implicit 2-step backward scheme

u′(tn+1) ≈ 3un+1 − 4un + un−1

2∆t

Scheme:

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆tf (un+1, tn+1)

Nonlinear equation for un+1.

The Leapfrog scheme

Idea:

u′(tn) ≈ un+1 − un−1

2∆t
= [D2tu]n (62)

Scheme:

[D2tu = f (u, t)]n

or written out,
un+1 = un−1 + ∆tf (un, tn) (63)

Some other scheme must be used as starter (u1).

Explicit scheme - a nonlinear f (in u) is trivial to handle.

Downside: Leapfrog is always unstable after some time.

The �ltered Leapfrog scheme

After computing un+1, stabilize Leapfrog by

un ← un + γ(un−1 − 2un + un+1) (64)

2nd-order Runge-Kutta scheme

Forward-Euler + approximate Crank-Nicolson:

u∗ = un + ∆tf (un, tn), (65)

un+1 = un + ∆t
1

2
(f (un, tn) + f (u∗, tn+1)) (66)

4th-order Runge-Kutta scheme

The most famous and widely used ODE method

4 evaluations of f per time step

Its derivation is a very good illustration of numerical thinking!

2nd-order Adams-Bashforth scheme

un+1 = un +
1

2
∆t
(
3f (un, tn)− f (un−1, tn−1)

)
(67)

3rd-order Adams-Bashforth scheme

un+1 = un +
1

12

(
23f (un, tn)− 16f (un−1, tn−1) + 5f (un−2, tn−2)

)

(68)

The Odespy software

Odespy features simple Python implementations of the most
fundamental schemes as well as Python interfaces to several famous
packages for solving ODEs: ODEPACK, Vode, rkc.f, rkf45.f,
Radau5, as well as the ODE solvers in SciPy, SymPy, and odelab.

Typical usage:

Define right-hand side of ODE
def f(u, t):

return -a*u

import odespy
import numpy as np

Set parameters and time mesh
I = 1; a = 2; T = 6; dt = 1.0
Nt = int(round(T/dt))
t_mesh = np.linspace(0, T, Nt+1)

Use a 4th-order Runge-Kutta method
solver = odespy.RK4(f)
solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

Example: Runge-Kutta methods

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),
odespy.BackwardEuler(f, nonlinear_solver='Newton')]

for solver in solvers:
solver.set_initial_condition(I)
u, t = solver.solve(t)

+ lots of plot code...

Plots from the experiments

The 4-th order Runge-Kutta method (RK4) is the method of choice!

Example: Adaptive Runge-Kutta methods

Adaptive methods �nd "optimal" locations of the mesh points
to ensure that the error is less than a given tolerance.
Downside: approximate error estimation, not always optimal
location of points.
"Industry standard ODE solver": Dormand-Prince 4/5-th order
Runge-Kutta (MATLAB's famous ode45).

