Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

Linear manufactured solution

u^n = ct_n+I fulfills the discrete equations!

First, \begin{align} \lbrack D_t^+ t\rbrack^n &= \frac{t_{n+1}-t_n}{\Delta t}=1, \tag{34}\\ \lbrack D_t^- t\rbrack^n &= \frac{t_{n}-t_{n-1}}{\Delta t}=1, \tag{35}\\ \lbrack D_t t\rbrack^n &= \frac{t_{n+\half}-t_{n-\half}}{\Delta t}=\frac{(n+\half)\Delta t - (n-\half)\Delta t}{\Delta t}=1\tag{36} \end{align}

Forward Euler: [D^+ u = -au + b]^n

a^n=a(t_n) , b^n=c + a(t_n)(ct_n + I) , and u^n=ct_n + I results in c = -a(t_n)(ct_n+I) + c + a(t_n)(ct_n + I) = c

« Previous
Next »