$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} $$

« Previous
Next »

Computation of the truncation error

Tool: Taylor expand \( \uex \) around the point where the ODE is sampled (here \( t_n \)) $$ \uex(t_{n+1}) = \uex(t_n) + \uex'(t_n)\Delta t + \half\uex''(t_n) \Delta t^2 + \cdots $$ Inserting this Taylor series in (31) gives $$ R^n = \uex'(t_n) + \half\uex''(t_n)\Delta t + \ldots + a\uex(t_n)$$ Now, \( \uex \) solves the ODE \( \uex'=-a\uex \), and then $$ R^n \approx \half\uex''(t_n)\Delta t$$ This is a mathematical expression for the truncation error.

« Previous
Next »