$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} $$

« Previous
Next »

Translation to Python function

from numpy import *

def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
    Nt = int(T/dt)            # no of time intervals
    T = Nt*dt                 # adjust T to fit time step dt
    u = zeros(Nt+1)           # array of u[n] values
    t = linspace(0, T, Nt+1)  # time mesh

    u[0] = I                  # assign initial condition
    for n in range(0, Nt):    # n=0,1,...,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t

Note about the for loop: range(0, Nt, s) generates all integers from 0 to Nt in steps of s (default 1), but not including Nt (!).

Sample call:

u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

« Previous
Next »