Idea 1: let the ODE hold at t_{n+\half} u'(t_{n+\half}) = -au(t_{n+\half})
Idea 2: approximate u'(t_{n+\half} by a centered difference \begin{equation} u'(t_{n+\half}) \approx \frac{u^{n+1}-u^n}{t_{n+1}-t_n} \tag{10} \end{equation}
Problem: u(t_{n+\half}) is not defined, only u^n=u(t_n) and u^{n+1}=u(t_{n+1})
Solution: u(t_{n+\half}) \approx \half(u^n + u^{n+1})