$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\uexd}[1]{{u_{\small\mbox{e}, #1}}}
\newcommand{\vex}{{v_{\small\mbox{e}}}}
\newcommand{\vexd}[1]{{v_{\small\mbox{e}, #1}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\halfi}{{1/2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Ddt}[1]{\frac{D #1}{dt}}
\newcommand{\E}[1]{\hbox{E}\lbrack #1 \rbrack}
\newcommand{\Var}[1]{\hbox{Var}\lbrack #1 \rbrack}
\newcommand{\Std}[1]{\hbox{Std}\lbrack #1 \rbrack}
\newcommand{\xpoint}{\boldsymbol{x}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\w}{\boldsymbol{w}}
\newcommand{\V}{\boldsymbol{V}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\F}{\boldsymbol{F}}
\newcommand{\stress}{\boldsymbol{\sigma}}
\newcommand{\strain}{\boldsymbol{\varepsilon}}
\newcommand{\stressc}{{\sigma}}
\newcommand{\strainc}{{\varepsilon}}
\newcommand{\I}{\boldsymbol{I}}
\newcommand{\T}{\boldsymbol{T}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\ii}{\boldsymbol{i}}
\newcommand{\jj}{\boldsymbol{j}}
\newcommand{\kk}{\boldsymbol{k}}
\newcommand{\ir}{\boldsymbol{i}_r}
\newcommand{\ith}{\boldsymbol{i}_{\theta}}
\newcommand{\iz}{\boldsymbol{i}_z}
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\It}{\mathcal{I}_t}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\setb}[1]{#1^0} % set begin
\newcommand{\sete}[1]{#1^{-1}} % set end
\newcommand{\setl}[1]{#1^-}
\newcommand{\setr}[1]{#1^+}
\newcommand{\seti}[1]{#1^i}
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\psib}{\boldsymbol{\psi}}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\Xno}[1]{X_{(#1)}}
\newcommand{\yno}[1]{y_{#1}}
\newcommand{\Yno}[1]{Y_{(#1)}}
\newcommand{\xdno}[1]{\boldsymbol{x}_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\Integerp}{\mathbb{N}}
\newcommand{\Integer}{\mathbb{Z}}
$$
Computing integrals
Integrals must be transformed from \( \Omega^{(e)} \) (physical cell)
to \( \tilde\Omega^r \) (reference cell):
$$
\begin{align}
\int_{\Omega^{(e)}}\basphi_i (\x) \basphi_j (\x) \dx &=
\int_{\tilde\Omega^r} \refphi_i (\X) \refphi_j (\X)
\det J\, \dX\\
\int_{\Omega^{(e)}}\basphi_i (\x) f(\x) \dx &=
\int_{\tilde\Omega^r} \refphi_i (\X) f(\x(\X)) \det J\, \dX
\end{align}
$$
where \( \dx = dx dy \) or \( \dx = dxdydz \) and \( \det J \) is the determinant of the
Jacobian of the mapping \( \x(\X) \).
$$
\begin{equation}
J = \left[\begin{array}{cc}
\frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y}\\
\frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y}
\end{array}\right], \quad
\det J = \frac{\partial x}{\partial X}\frac{\partial y}{\partial Y}
- \frac{\partial x}{\partial Y}\frac{\partial y}{\partial X}
\tag{34}
\end{equation}
$$
Affine mapping
(32): \( \det J=2\Delta \), \( \Delta = \hbox{cell volume} \)
!slide
Remark on going from 1D to 2D/3D
Finite elements in 2D and 3D builds on the same
ideas and concepts as in 1D, but there is simply much
more to compute because the
specific mathematical formulas in 2D and 3D are more complicated
and the book keeping with dof maps also gets more complicated.
The manual work is tedious, lengthy, and error-prone
so automation by the computer is a must.